|
from concurrent.futures import ThreadPoolExecutor |
|
import gc |
|
import time |
|
from typing import Optional |
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
def clean_memory_on_device(device: torch.device): |
|
r""" |
|
Clean memory on the specified device, will be called from training scripts. |
|
""" |
|
gc.collect() |
|
|
|
|
|
if device.type == "cuda": |
|
torch.cuda.empty_cache() |
|
if device.type == "xpu": |
|
torch.xpu.empty_cache() |
|
if device.type == "mps": |
|
torch.mps.empty_cache() |
|
|
|
|
|
def synchronize_device(device: torch.device): |
|
if device.type == "cuda": |
|
torch.cuda.synchronize() |
|
elif device.type == "xpu": |
|
torch.xpu.synchronize() |
|
elif device.type == "mps": |
|
torch.mps.synchronize() |
|
|
|
|
|
def swap_weight_devices_cuda(device: torch.device, layer_to_cpu: nn.Module, layer_to_cuda: nn.Module): |
|
assert layer_to_cpu.__class__ == layer_to_cuda.__class__ |
|
|
|
weight_swap_jobs = [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules_to_cpu = {k: v for k, v in layer_to_cpu.named_modules()} |
|
for module_to_cuda_name, module_to_cuda in layer_to_cuda.named_modules(): |
|
if hasattr(module_to_cuda, "weight") and module_to_cuda.weight is not None: |
|
module_to_cpu = modules_to_cpu.get(module_to_cuda_name, None) |
|
if module_to_cpu is not None and module_to_cpu.weight.shape == module_to_cuda.weight.shape: |
|
weight_swap_jobs.append((module_to_cpu, module_to_cuda, module_to_cpu.weight.data, module_to_cuda.weight.data)) |
|
else: |
|
if module_to_cuda.weight.data.device.type != device.type: |
|
|
|
|
|
|
|
module_to_cuda.weight.data = module_to_cuda.weight.data.to(device) |
|
|
|
torch.cuda.current_stream().synchronize() |
|
|
|
stream = torch.cuda.Stream() |
|
with torch.cuda.stream(stream): |
|
|
|
for module_to_cpu, module_to_cuda, cuda_data_view, cpu_data_view in weight_swap_jobs: |
|
cuda_data_view.record_stream(stream) |
|
module_to_cpu.weight.data = cuda_data_view.data.to("cpu", non_blocking=True) |
|
|
|
stream.synchronize() |
|
|
|
|
|
for module_to_cpu, module_to_cuda, cuda_data_view, cpu_data_view in weight_swap_jobs: |
|
cuda_data_view.copy_(module_to_cuda.weight.data, non_blocking=True) |
|
module_to_cuda.weight.data = cuda_data_view |
|
|
|
stream.synchronize() |
|
torch.cuda.current_stream().synchronize() |
|
|
|
|
|
def swap_weight_devices_no_cuda(device: torch.device, layer_to_cpu: nn.Module, layer_to_cuda: nn.Module): |
|
""" |
|
not tested |
|
""" |
|
assert layer_to_cpu.__class__ == layer_to_cuda.__class__ |
|
|
|
weight_swap_jobs = [] |
|
for module_to_cpu, module_to_cuda in zip(layer_to_cpu.modules(), layer_to_cuda.modules()): |
|
if hasattr(module_to_cpu, "weight") and module_to_cpu.weight is not None: |
|
weight_swap_jobs.append((module_to_cpu, module_to_cuda, module_to_cpu.weight.data, module_to_cuda.weight.data)) |
|
|
|
|
|
for module_to_cpu, module_to_cuda, cuda_data_view, cpu_data_view in weight_swap_jobs: |
|
module_to_cpu.weight.data = cuda_data_view.data.to("cpu", non_blocking=True) |
|
|
|
synchronize_device() |
|
|
|
|
|
for module_to_cpu, module_to_cuda, cuda_data_view, cpu_data_view in weight_swap_jobs: |
|
cuda_data_view.copy_(module_to_cuda.weight.data, non_blocking=True) |
|
module_to_cuda.weight.data = cuda_data_view |
|
|
|
synchronize_device() |
|
|
|
|
|
def weighs_to_device(layer: nn.Module, device: torch.device): |
|
for module in layer.modules(): |
|
if hasattr(module, "weight") and module.weight is not None: |
|
module.weight.data = module.weight.data.to(device, non_blocking=True) |
|
|
|
|
|
class Offloader: |
|
""" |
|
common offloading class |
|
""" |
|
|
|
def __init__(self, block_type: str, num_blocks: int, blocks_to_swap: int, device: torch.device, debug: bool = False): |
|
self.block_type = block_type |
|
self.num_blocks = num_blocks |
|
self.blocks_to_swap = blocks_to_swap |
|
self.device = device |
|
self.debug = debug |
|
|
|
self.thread_pool = ThreadPoolExecutor(max_workers=1) |
|
self.futures = {} |
|
self.cuda_available = device.type == "cuda" |
|
|
|
def swap_weight_devices(self, block_to_cpu: nn.Module, block_to_cuda: nn.Module): |
|
if self.cuda_available: |
|
swap_weight_devices_cuda(self.device, block_to_cpu, block_to_cuda) |
|
else: |
|
swap_weight_devices_no_cuda(self.device, block_to_cpu, block_to_cuda) |
|
|
|
def _submit_move_blocks(self, blocks, block_idx_to_cpu, block_idx_to_cuda): |
|
def move_blocks(bidx_to_cpu, block_to_cpu, bidx_to_cuda, block_to_cuda): |
|
if self.debug: |
|
start_time = time.perf_counter() |
|
print( |
|
f"[{self.block_type}] Move block {bidx_to_cpu} to CPU and block {bidx_to_cuda} to {'CUDA' if self.cuda_available else 'device'}" |
|
) |
|
|
|
self.swap_weight_devices(block_to_cpu, block_to_cuda) |
|
|
|
if self.debug: |
|
print(f"[{self.block_type}] Moved blocks {bidx_to_cpu} and {bidx_to_cuda} in {time.perf_counter()-start_time:.2f}s") |
|
return bidx_to_cpu, bidx_to_cuda |
|
|
|
block_to_cpu = blocks[block_idx_to_cpu] |
|
block_to_cuda = blocks[block_idx_to_cuda] |
|
|
|
self.futures[block_idx_to_cuda] = self.thread_pool.submit( |
|
move_blocks, block_idx_to_cpu, block_to_cpu, block_idx_to_cuda, block_to_cuda |
|
) |
|
|
|
def _wait_blocks_move(self, block_idx): |
|
if block_idx not in self.futures: |
|
return |
|
|
|
if self.debug: |
|
print(f"[{self.block_type}] Wait for block {block_idx}") |
|
start_time = time.perf_counter() |
|
|
|
future = self.futures.pop(block_idx) |
|
_, bidx_to_cuda = future.result() |
|
|
|
assert block_idx == bidx_to_cuda, f"Block index mismatch: {block_idx} != {bidx_to_cuda}" |
|
|
|
if self.debug: |
|
print(f"[{self.block_type}] Waited for block {block_idx}: {time.perf_counter()-start_time:.2f}s") |
|
|
|
|
|
class ModelOffloader(Offloader): |
|
""" |
|
supports forward offloading |
|
""" |
|
|
|
def __init__( |
|
self, |
|
block_type: str, |
|
blocks: list[nn.Module], |
|
num_blocks: int, |
|
blocks_to_swap: int, |
|
supports_backward: bool, |
|
device: torch.device, |
|
debug: bool = False, |
|
): |
|
super().__init__(block_type, num_blocks, blocks_to_swap, device, debug) |
|
|
|
self.supports_backward = supports_backward |
|
|
|
if self.supports_backward: |
|
|
|
self.remove_handles = [] |
|
for i, block in enumerate(blocks): |
|
hook = self.create_backward_hook(blocks, i) |
|
if hook is not None: |
|
handle = block.register_full_backward_hook(hook) |
|
self.remove_handles.append(handle) |
|
|
|
def __del__(self): |
|
if self.supports_backward: |
|
for handle in self.remove_handles: |
|
handle.remove() |
|
|
|
def create_backward_hook(self, blocks: list[nn.Module], block_index: int) -> Optional[callable]: |
|
|
|
num_blocks_propagated = self.num_blocks - block_index - 1 |
|
swapping = num_blocks_propagated > 0 and num_blocks_propagated <= self.blocks_to_swap |
|
waiting = block_index > 0 and block_index <= self.blocks_to_swap |
|
|
|
if not swapping and not waiting: |
|
return None |
|
|
|
|
|
block_idx_to_cpu = self.num_blocks - num_blocks_propagated |
|
block_idx_to_cuda = self.blocks_to_swap - num_blocks_propagated |
|
block_idx_to_wait = block_index - 1 |
|
|
|
def backward_hook(module, grad_input, grad_output): |
|
if self.debug: |
|
print(f"Backward hook for block {block_index}") |
|
|
|
if swapping: |
|
self._submit_move_blocks(blocks, block_idx_to_cpu, block_idx_to_cuda) |
|
if waiting: |
|
self._wait_blocks_move(block_idx_to_wait) |
|
return None |
|
|
|
return backward_hook |
|
|
|
def prepare_block_devices_before_forward(self, blocks: list[nn.Module]): |
|
if self.blocks_to_swap is None or self.blocks_to_swap == 0: |
|
return |
|
|
|
if self.debug: |
|
print(f"[{self.block_type}] Prepare block devices before forward") |
|
|
|
for b in blocks[0 : self.num_blocks - self.blocks_to_swap]: |
|
b.to(self.device) |
|
weighs_to_device(b, self.device) |
|
|
|
for b in blocks[self.num_blocks - self.blocks_to_swap :]: |
|
b.to(self.device) |
|
weighs_to_device(b, "cpu") |
|
|
|
synchronize_device(self.device) |
|
clean_memory_on_device(self.device) |
|
|
|
def wait_for_block(self, block_idx: int): |
|
if self.blocks_to_swap is None or self.blocks_to_swap == 0: |
|
return |
|
self._wait_blocks_move(block_idx) |
|
|
|
def submit_move_blocks_forward(self, blocks: list[nn.Module], block_idx: int): |
|
|
|
if self.blocks_to_swap is None or self.blocks_to_swap == 0: |
|
return |
|
|
|
|
|
if self.supports_backward and block_idx >= self.blocks_to_swap: |
|
return |
|
|
|
block_idx_to_cpu = block_idx |
|
block_idx_to_cuda = self.num_blocks - self.blocks_to_swap + block_idx |
|
block_idx_to_cuda = block_idx_to_cuda % self.num_blocks |
|
self._submit_move_blocks(blocks, block_idx_to_cpu, block_idx_to_cuda) |
|
|