tangled-llama-e-128k-v0.1
A pretrained language model based on the Llama model with about 134.2M parameters. This model has been trained on 9.9B (9,889,496,064
) tokens from more than ??? (???
) dataset rows.
This model isn't designed for immediate use but rather for Continued Pretraining and Finetuning on a downstream task. While it can handle a context length of up to 128K (131,072
) tokens, it was pretrained with sequences of 512 (512
) tokens.
The objective is to streamline the cognitive or reasoning core, eliminating any redundant knowledge from the model.
Pretrain
134,234,368 params 653.11 TFLOPS on 1x RTX 3090 24GB
Epoch 3 | iter 1755912 step 38172 | loss train: 2.350, val: 2.473 | iter time: 779.54 ms (step) remaining time: 0:00:08
Final evaluation | val loss: 2.471 | val ppl: 11.837
----------------------------------------
| Performance
| - Total tokens : 9,889,493,504
| - Training Time : 448691.01 s
| - Tok/sec : 5162.13 tok/s
| ----------------------------------------
| Memory Usage
| - Memory Used : 23.47 GB
----------------------------------------
Pretrain Evaluation
lm-evaluation-harness
litgpt evaluate --tasks 'hellaswag,gsm8k,truthfulqa_mc2,mmlu,winogrande,arc_challenge' --out_dir 'evaluate-quick/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
litgpt evaluate --tasks 'leaderboard' --out_dir 'evaluate-leaderboard/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
litgpt evaluate --tasks 'gsm8k,mathqa' --out_dir 'evaluate-math/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
litgpt evaluate --tasks 'mmlu,mmlu_pro' --out_dir 'evaluate-mmlu/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
litgpt evaluate --tasks 'arc_challenge,boolq,gpqa,hellaswag,openbookqa,piqa,truthfulqa_mc2,winogrande' --out_dir 'evaluate-reasoning/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
litgpt evaluate --tasks 'wikitext,qasper' --out_dir 'evaluate-long/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.