See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
- 296cd3b6a996ecf6_train_data.json
ds_type: json
format: custom
path: 296cd3b6a996ecf6_train_data.json
type:
field: null
field_input: null
field_instruction: user
field_output: chip2
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
early_stopping_patience: null
evals_per_epoch: 2
gradient_accumulation_steps: 1
group_by_length: false
hub_model_id: taopanda-1/17ba6118-af07-459a-959a-678a189f44a4
learning_rate: 1.0e-05
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: null
lora_target_modules:
- query_key_value
micro_batch_size: 4
num_epochs: 1
output_dir: ./outputs/lora-alpaca-pythia/taopanda-1_03508cf1-5aff-47a6-b375-7a4ea203b6a0
resume_from_checkpoint: null
seed: 13400
sequence_len: 512
tf32: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-1_03508cf1-5aff-47a6-b375-7a4ea203b6a0
wandb_project: subnet56
wandb_runid: taopanda-1_03508cf1-5aff-47a6-b375-7a4ea203b6a0
wandb_watch: null
weight_decay: 0.1
17ba6118-af07-459a-959a-678a189f44a4
This model is a fine-tuned version of OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2511
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 13400
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.1448 | 0.0001 | 1 | 1.8297 |
1.1969 | 0.5 | 6237 | 1.2616 |
0.922 | 1.0 | 12474 | 1.2511 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 8