See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4
bf16: auto
datasets:
- data_files:
- 33da4cb661f3ab98_train_data.json
ds_type: json
format: custom
path: 33da4cb661f3ab98_train_data.json
type:
field: null
field_input: null
field_instruction: path
field_output: content
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_sample_packing: false
eval_strategy: 'no'
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: taopanda-1/49572787-444a-45dc-b7b3-fbaca183d402
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: '30'
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: ./outputs/out/taopanda-1_b12f2a35-0fe7-44c9-9092-6c335faa9901
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
save_steps: '6'
seed: 26643
sequence_len: 4096
special_tokens: null
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.0
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-1_b12f2a35-0fe7-44c9-9092-6c335faa9901
wandb_project: subnet56
wandb_runid: taopanda-1_b12f2a35-0fe7-44c9-9092-6c335faa9901
wandb_watch: null
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
49572787-444a-45dc-b7b3-fbaca183d402
This model is a fine-tuned version of MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4 on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 26643
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- training_steps: 30
Training results
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for taopanda-1/49572787-444a-45dc-b7b3-fbaca183d402
Base model
MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4