Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2.5-1.5B-Instruct
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
  - 1dc8c95706170fa9_train_data.json
  ds_type: json
  format: custom
  path: 1dc8c95706170fa9_train_data.json
  type:
    field: null
    field_input: rejected
    field_instruction: prompt
    field_output: chosen
    field_system: null
    format: null
    no_input_format: null
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_strategy: 'no'
eval_table_size: null
evals_per_epoch: 4
flash_attention: null
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: taopanda-1/61ff7359-2b38-4a54-8b35-8901876f7969
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: '2000'
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: ./outputs/lora-out/taopanda-1_856315db-340a-4e9d-99a3-4770d968aba4
pad_to_sequence_len: null
resume_from_checkpoint: null
sample_packing: false
save_steps: '500'
seed: 55433
sequence_len: 2048
special_tokens: null
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.0
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-1_856315db-340a-4e9d-99a3-4770d968aba4
wandb_project: subnet56
wandb_runid: taopanda-1_856315db-340a-4e9d-99a3-4770d968aba4
wandb_watch: null
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null

Visualize in Weights & Biases

61ff7359-2b38-4a54-8b35-8901876f7969

This model is a fine-tuned version of unsloth/Qwen2.5-1.5B-Instruct on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 55433
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • training_steps: 2000

Training results

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for taopanda-1/61ff7359-2b38-4a54-8b35-8901876f7969

Base model

Qwen/Qwen2.5-1.5B
Adapter
(220)
this model