wav2vec2-base-960h-finetuned-ks

This model is a fine-tuned version of facebook/wav2vec2-base-960h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6449
  • Accuracy: 0.1069

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • lr_scheduler_warmup_steps: 10
  • training_steps: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 2.6379 0.0840
1.3193 2.0 3 2.6377 0.0840
1.1536 3.0 4 2.6374 0.0763
0.8255 4.0 6 2.6377 0.0763
0.8247 5.0 8 2.6390 0.0763
0.8247 6.0 9 2.6387 0.0840
1.1536 7.0 11 2.6415 0.0992
1.3183 8.0 12 2.6408 0.0916
1.3183 9.0 13 2.6402 0.0992
1.3176 10.0 15 2.6414 0.0992
1.1517 11.0 16 2.6419 0.0992
0.823 12.0 18 2.6426 0.0992
0.8222 13.0 20 2.6449 0.1069
0.8222 14.0 21 2.6467 0.0992
1.1534 15.0 23 2.6469 0.0916
1.3186 16.0 24 2.6464 0.0840
1.3186 17.0 25 2.6460 0.0840
1.3143 18.0 27 2.6454 0.0916
1.1482 19.0 28 2.6450 0.0840
0.8229 20.0 30 2.6450 0.0840

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
11
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tataun/wav2vec2-base-960h-finetuned-ks

Finetuned
(123)
this model