|
--- |
|
datasets: |
|
- tbboukhari/Alpaca_french_instruct |
|
language: |
|
- fr |
|
library_name: transformers |
|
tags: |
|
- Alpaca |
|
- Instruction-fine-tuning |
|
- NLP |
|
- Instruct Alpaca |
|
- PEFT |
|
- LoRA |
|
--- |
|
|
|
## How to use🦙: |
|
```py |
|
import torch |
|
import bitsandbytes as bnb |
|
from peft import PeftModel, PeftConfig, prepare_model_for_int8_training, LoraConfig, get_peft_model |
|
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig |
|
|
|
peft_model_id = "tbboukhari/Alpaca_instruction_fine_tune_French" |
|
config = PeftConfig.from_pretrained(peft_model_id) |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(config.base_model_name_or_path) |
|
model = LlamaForCausalLM.from_pretrained(config.base_model_name_or_path, |
|
load_in_8bit=True, |
|
device_map="auto",) |
|
# Load the Lora model |
|
model = PeftModel.from_pretrained(model, peft_model_id) |
|
|
|
# Based on the inference code by `tloen/alpaca-lora` |
|
def generate_prompt(instruction, entree=None): |
|
if entree : |
|
return f"""Vous trouverez ci-dessous des instructions décrivant une tâche, ainsi qu'une entrée qui fournit plus de contexte. Rédigez une réponse qui complète convenablement la demande. |
|
### instructions: |
|
{instruction} |
|
### entrée: |
|
{entree} |
|
### sortie:""" |
|
|
|
else: |
|
return f"""Vous trouverez ci-dessous des instructions décrivant une tâche, ainsi qu'une entrée qui fournit plus de contexte. Rédigez une réponse qui complète convenablement la demande. |
|
|
|
### instructions: |
|
{instruction} |
|
### sortie:""" |
|
|
|
# Inputs to instantiate the model: |
|
generation_config = GenerationConfig( |
|
temperature=0.2, |
|
top_p=0.75, |
|
num_beams=4, |
|
) |
|
# Evaluate the model: |
|
def evaluate(instruction, input=None): |
|
prompt = generate_prompt(instruction, input) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].cuda() |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=256 |
|
) |
|
for s in generation_output.sequences: |
|
output = tokenizer.decode(s) |
|
print("sortie:", output.split("### sortie:")[1].strip()) |
|
|
|
evaluate(input("instructions: ")) |
|
``` |