wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5261
  • Wer: 0.3351

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.5764 1.0 500 2.3358 1.0
0.9494 2.01 1000 0.6086 0.5448
0.4527 3.01 1500 0.4731 0.4685
0.307 4.02 2000 0.4432 0.4341
0.2366 5.02 2500 0.4343 0.4025
0.1934 6.02 3000 0.4284 0.4105
0.154 7.03 3500 0.4709 0.3936
0.14 8.03 4000 0.4296 0.3889
0.1189 9.04 4500 0.4864 0.3862
0.1057 10.04 5000 0.4903 0.3776
0.1034 11.04 5500 0.4889 0.3838
0.0899 12.05 6000 0.4680 0.3701
0.0864 13.05 6500 0.4981 0.3608
0.0714 14.06 7000 0.4608 0.3589
0.0673 15.06 7500 0.4970 0.3754
0.0606 16.06 8000 0.5344 0.3618
0.0603 17.07 8500 0.4980 0.3675
0.0588 18.07 9000 0.5339 0.3601
0.0453 19.08 9500 0.4973 0.3526
0.0433 20.08 10000 0.5359 0.3572
0.0421 21.08 10500 0.4885 0.3532
0.0359 22.09 11000 0.5184 0.3471
0.032 23.09 11500 0.5230 0.3483
0.0333 24.1 12000 0.5512 0.3474
0.0279 25.1 12500 0.5102 0.3437
0.0232 26.1 13000 0.5195 0.3384
0.0237 27.11 13500 0.5350 0.3355
0.0209 28.11 14000 0.5432 0.3368
0.023 29.12 14500 0.5261 0.3351

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.12.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.