|
from transformers import PretrainedConfig |
|
|
|
|
|
class RetNetConfig(PretrainedConfig): |
|
model_type = "retnet" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=512, |
|
num_hidden_layers=6, |
|
num_rettention_heads=8, |
|
intermediate_size=2048, |
|
hidden_act="gelu", |
|
max_position_embeddings=512, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-5, |
|
dropout=0.1, |
|
activation_dropout=0.0, |
|
normalize_before=False, |
|
attention_type="parallel", |
|
recurrent_chunk_size=512, |
|
output_retentions=False, |
|
output_hidden_states=False, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_rettention_heads = num_rettention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.attention_type = attention_type |
|
self.max_position_embeddings = max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.dropout = dropout |
|
self.normalize_before = normalize_before |
|
self.activation_dropout = activation_dropout |
|
self.recurrent_chunk_size = recurrent_chunk_size |
|
self.output_retentions = output_retentions |
|
self.output_hidden_states = output_hidden_states |
|
|