Edit model card

distilbert-base-uncased-distilled-clinc

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0729
  • Accuracy: 0.9542

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00024873084723767293
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3369 1.0 318 0.1240 0.9061
0.098 2.0 636 0.0978 0.9342
0.0733 3.0 954 0.0872 0.9394
0.0666 4.0 1272 0.0834 0.9465
0.0624 5.0 1590 0.0840 0.9442
0.0604 6.0 1908 0.0814 0.9477
0.0576 7.0 2226 0.0812 0.9490
0.056 8.0 2544 0.0767 0.9503
0.0545 9.0 2862 0.0760 0.9523
0.0533 10.0 3180 0.0767 0.9497
0.0521 11.0 3498 0.0742 0.9513
0.0514 12.0 3816 0.0743 0.9523
0.0506 13.0 4134 0.0731 0.9539
0.0499 14.0 4452 0.0729 0.9542

Framework versions

  • Transformers 4.16.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
12
Inference API
Unable to determine this model's library. Check the docs .