distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0729
- Accuracy: 0.9542
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00024873084723767293
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 14
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3369 | 1.0 | 318 | 0.1240 | 0.9061 |
0.098 | 2.0 | 636 | 0.0978 | 0.9342 |
0.0733 | 3.0 | 954 | 0.0872 | 0.9394 |
0.0666 | 4.0 | 1272 | 0.0834 | 0.9465 |
0.0624 | 5.0 | 1590 | 0.0840 | 0.9442 |
0.0604 | 6.0 | 1908 | 0.0814 | 0.9477 |
0.0576 | 7.0 | 2226 | 0.0812 | 0.9490 |
0.056 | 8.0 | 2544 | 0.0767 | 0.9503 |
0.0545 | 9.0 | 2862 | 0.0760 | 0.9523 |
0.0533 | 10.0 | 3180 | 0.0767 | 0.9497 |
0.0521 | 11.0 | 3498 | 0.0742 | 0.9513 |
0.0514 | 12.0 | 3816 | 0.0743 | 0.9523 |
0.0506 | 13.0 | 4134 | 0.0731 | 0.9539 |
0.0499 | 14.0 | 4452 | 0.0729 | 0.9542 |
Framework versions
- Transformers 4.16.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 12