TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

netcat420/MFANN-llama3.1-abliterated-SLERP-v3.1 - GGUF

This repo contains GGUF format model files for netcat420/MFANN-llama3.1-abliterated-SLERP-v3.1.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Model file specification

Filename Quant type File Size Description
MFANN-llama3.1-abliterated-SLERP-v3.1-Q2_K.gguf Q2_K 3.179 GB smallest, significant quality loss - not recommended for most purposes
MFANN-llama3.1-abliterated-SLERP-v3.1-Q3_K_S.gguf Q3_K_S 3.665 GB very small, high quality loss
MFANN-llama3.1-abliterated-SLERP-v3.1-Q3_K_M.gguf Q3_K_M 4.019 GB very small, high quality loss
MFANN-llama3.1-abliterated-SLERP-v3.1-Q3_K_L.gguf Q3_K_L 4.322 GB small, substantial quality loss
MFANN-llama3.1-abliterated-SLERP-v3.1-Q4_0.gguf Q4_0 4.661 GB legacy; small, very high quality loss - prefer using Q3_K_M
MFANN-llama3.1-abliterated-SLERP-v3.1-Q4_K_S.gguf Q4_K_S 4.693 GB small, greater quality loss
MFANN-llama3.1-abliterated-SLERP-v3.1-Q4_K_M.gguf Q4_K_M 4.921 GB medium, balanced quality - recommended
MFANN-llama3.1-abliterated-SLERP-v3.1-Q5_0.gguf Q5_0 5.599 GB legacy; medium, balanced quality - prefer using Q4_K_M
MFANN-llama3.1-abliterated-SLERP-v3.1-Q5_K_S.gguf Q5_K_S 5.599 GB large, low quality loss - recommended
MFANN-llama3.1-abliterated-SLERP-v3.1-Q5_K_M.gguf Q5_K_M 5.733 GB large, very low quality loss - recommended
MFANN-llama3.1-abliterated-SLERP-v3.1-Q6_K.gguf Q6_K 6.596 GB very large, extremely low quality loss
MFANN-llama3.1-abliterated-SLERP-v3.1-Q8_0.gguf Q8_0 8.541 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/MFANN-llama3.1-abliterated-SLERP-v3.1-GGUF --include "MFANN-llama3.1-abliterated-SLERP-v3.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/MFANN-llama3.1-abliterated-SLERP-v3.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
14
GGUF
Model size
8.03B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tensorblock/MFANN-llama3.1-abliterated-SLERP-v3.1-GGUF

Quantized
(12)
this model

Dataset used to train tensorblock/MFANN-llama3.1-abliterated-SLERP-v3.1-GGUF