GGUF
Mixture of Experts
mixtral
openchat/openchat-3.5-0106
giux78/zefiro-7b-beta-ITA-v0.1
azale-ai/Starstreak-7b-beta
gagan3012/Mistral_arabic_dpo
davidkim205/komt-mistral-7b-v1
OpenBuddy/openbuddy-zephyr-7b-v14.1
manishiitg/open-aditi-hi-v1
VAGOsolutions/SauerkrautLM-7b-v1-mistral
TensorBlock
GGUF
Eval Results
Inference Endpoints
conversational
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
gagan3012/Multilingual-mistral - GGUF
This repo contains GGUF format model files for gagan3012/Multilingual-mistral.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
<s>[INST] {prompt} [/INST]
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Multilingual-mistral-Q2_K.gguf | Q2_K | 17.311 GB | smallest, significant quality loss - not recommended for most purposes |
Multilingual-mistral-Q3_K_S.gguf | Q3_K_S | 20.433 GB | very small, high quality loss |
Multilingual-mistral-Q3_K_M.gguf | Q3_K_M | 22.546 GB | very small, high quality loss |
Multilingual-mistral-Q3_K_L.gguf | Q3_K_L | 24.170 GB | small, substantial quality loss |
Multilingual-mistral-Q4_0.gguf | Q4_0 | 26.444 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Multilingual-mistral-Q4_K_S.gguf | Q4_K_S | 26.746 GB | small, greater quality loss |
Multilingual-mistral-Q4_K_M.gguf | Q4_K_M | 28.448 GB | medium, balanced quality - recommended |
Multilingual-mistral-Q5_0.gguf | Q5_0 | 32.231 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Multilingual-mistral-Q5_K_S.gguf | Q5_K_S | 32.231 GB | large, low quality loss - recommended |
Multilingual-mistral-Q5_K_M.gguf | Q5_K_M | 33.230 GB | large, very low quality loss - recommended |
Multilingual-mistral-Q6_K.gguf | Q6_K | 38.381 GB | very large, extremely low quality loss |
Multilingual-mistral-Q8_0.gguf | Q8_0 | 49.626 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Multilingual-mistral-GGUF --include "Multilingual-mistral-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Multilingual-mistral-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
- Downloads last month
- 64
Model tree for tensorblock/Multilingual-mistral-GGUF
Base model
gagan3012/Multilingual-mistralEvaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard62.290
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard81.760
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard61.380
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard55.530
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard75.530
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard40.260