metadata
language: zh
tags:
- sentiment-analysis
- pytorch
widget:
- text: 房间非常非常小,内窗,特别不透气,因为夜里走廊灯光是亮的,内窗对着走廊,窗帘又不能完全拉死,怎么都会有一道光射进来。
- text: 尽快有洗衣房就好了。
- text: 很好,干净整洁,交通方便。
- text: 干净整洁很好
Note
BERT based sentiment analysis, finetune based on https://huggingface.co/IDEA-CCNL/Erlangshen-Roberta-330M-Sentiment .
The model trained on hotel human review chinese datasets.
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
MODEL = "tezign/Erlangshen-Sentiment-FineTune"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL, trust_remote_code=True)
classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
result = classifier("很好,干净整洁,交通方便。")
print(result)
"""
print result
>> [{'label': 'Positive', 'score': 0.989660382270813}]
"""
Evaluate
We compared and evaluated the performance of Our finetune model and the Original Erlangshen model on the hotel human review test dataset(5429 negative reviews and 1251 positive reviews).
The results showed that our model substantial improved the precision and recall of positive review:
Our finetune model:
precision recall f1-score support
Negative 0.99 0.98 0.98 5429
Positive 0.92 0.95 0.93 1251
accuracy 0.97 6680
macro avg 0.95 0.96 0.96 6680
weighted avg 0.97 0.97 0.97 6680
======================================================
Original Erlangshen model:
precision recall f1-score support
Negative 0.81 1.00 0.90 5429
Positive 0.00 0.00 0.00 1251
accuracy 0.81 6680
macro avg 0.41 0.50 0.45 6680
weighted avg 0.66 0.81 0.73 6680