trek90s
Update README.md
d5968f3
|
raw
history blame
1.1 kB
---
language: zh
tags:
- sentiment-analysis
- pytorch
widget:
- text: "房间非常非常小,内窗,特别不透气,因为夜里走廊灯光是亮的,内窗对着走廊,窗帘又不能完全拉死,怎么都会有一道光射进来。"
- text: "尽快有洗衣房就好了。"
- text: "很好,干净整洁,交通方便。"
- text: "干净整洁很好"
---
# Note
BERT based sentiment analysis, finetune based on https://huggingface.co/IDEA-CCNL/Erlangshen-Roberta-330M-Sentiment .The model trained on hotel human review chinese datasets.
# Usage
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
MODEL = "tezign/Erlangshen-Sentiment-FineTune"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL, trust_remote_code=True)
classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
result = classifier("很好,干净整洁,交通方便。")
print(result)
"""
print result
>> [{'label': 'Positive', 'score': 0.989660382270813}]
"""
```