ner-biomedical-maccrobat2018

This model is a fine-tuned version of d4data/biomedical-ner-all on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6342
  • Accuracy: 0.7903

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.5437 1.0 10 1.6009 0.3671
1.3262 2.0 20 0.9660 0.6254
0.8675 3.0 30 0.7436 0.7145
0.6199 4.0 40 0.6544 0.7385
0.4707 5.0 50 0.6131 0.7660
0.3735 6.0 60 0.6027 0.7709
0.3049 7.0 70 0.6056 0.7786
0.2507 8.0 80 0.5992 0.7792
0.2144 9.0 90 0.6115 0.7780
0.1801 10.0 100 0.6062 0.7863
0.1539 11.0 110 0.6101 0.7854
0.1372 12.0 120 0.6157 0.7892
0.1234 13.0 130 0.6269 0.7896
0.1119 14.0 140 0.6285 0.7881
0.1025 15.0 150 0.6364 0.7879
0.0945 16.0 160 0.6326 0.7896
0.09 17.0 170 0.6297 0.7916
0.0861 18.0 180 0.6318 0.7908
0.083 19.0 190 0.6317 0.7901
0.0817 20.0 200 0.6342 0.7903

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
732
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for thainq107/ner-biomedical-maccrobat2018

Finetuned
(2)
this model