Visualize in Weights & Biases

lsg-bart-base-16384-pubmed-finetuned-pubmed-16394

This model is a fine-tuned version of ccdv/lsg-bart-base-16384-pubmed on the pubmed-summarization dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9068
  • Rouge1: 0.4718
  • Rouge2: 0.2342
  • Rougel: 0.3033
  • Rougelsum: 0.436

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0009
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
4.2792 0.8 50 0.9068 0.4718 0.2342 0.3033 0.436

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.0.0
  • Datasets 2.15.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
163M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for thanhkt/lsg-bart-base-16384-pubmed-finetuned-pubmed-16394

Finetuned
(1)
this model