File size: 1,752 Bytes
efb35a4
 
 
 
 
 
 
 
 
 
 
 
 
 
e4831ea
efb35a4
 
 
 
e4831ea
 
 
 
 
 
 
 
 
 
efb35a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4831ea
efb35a4
 
 
 
 
 
 
 
e4831ea
efb35a4
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
base_model: ccdv/lsg-bart-base-16384-pubmed
tags:
- generated_from_trainer
datasets:
- pubmed-summarization
model-index:
- name: lsg-bart-base-16384-pubmed-finetuned-pubmed-16394
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/thanhkt27507-vsu/huggingface/runs/056l8muj)
# lsg-bart-base-16384-pubmed-finetuned-pubmed-16394

This model is a fine-tuned version of [ccdv/lsg-bart-base-16384-pubmed](https://huggingface.co/ccdv/lsg-bart-base-16384-pubmed) on the pubmed-summarization dataset.
It achieves the following results on the evaluation set:
- eval_loss: 5.6482
- eval_rouge1: 0.451
- eval_rouge2: 0.2128
- eval_rougeL: 0.2772
- eval_rougeLsum: 0.4174
- eval_runtime: 484.657
- eval_samples_per_second: 0.413
- eval_steps_per_second: 0.206
- epoch: 1.6
- step: 100

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 9

### Framework versions

- Transformers 4.42.4
- Pytorch 2.0.0
- Datasets 2.15.0
- Tokenizers 0.19.1