language: en | |
license: cc-by-4.0 | |
tags: | |
- roberta | |
- roberta-base | |
- token-classification | |
- NER | |
- named-entities | |
- BIO | |
- movies | |
datasets: | |
- MIT Movie | |
# roberta-base + Movies NER Task | |
Objective: | |
This is Roberta Base trained for the NER task using MIT Movie Dataset | |
``` | |
model_name = "thatdramebaazguy/roberta-base-MITmovie" | |
pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="ner") | |
``` | |
## Overview | |
**Language model:** roberta-base | |
**Language:** English | |
**Downstream-task:** NER | |
**Training data:** MIT Movie | |
**Eval data:** MIT Movie | |
**Infrastructure**: 2x Tesla v100 | |
**Code:** See [example](https://github.com/adityaarunsinghal/Domain-Adaptation/blob/master/scripts/shell_scripts/movieR_NER_squad.sh) | |
## Hyperparameters | |
``` | |
Num examples = 6253 | |
Num Epochs = 5 | |
Instantaneous batch size per device = 64 | |
Total train batch size (w. parallel, distributed & accumulation) = 128 | |
``` | |
## Performance | |
### Eval on MIT Movie | |
- epoch = 5.0 | |
- eval_accuracy = 0.9476 | |
- eval_f1 = 0.8853 | |
- eval_loss = 0.2208 | |
- eval_mem_cpu_alloc_delta = 17MB | |
- eval_mem_cpu_peaked_delta = 2MB | |
- eval_mem_gpu_alloc_delta = 0MB | |
- eval_mem_gpu_peaked_delta = 38MB | |
- eval_precision = 0.8833 | |
- eval_recall = 0.8874 | |
- eval_runtime = 0:00:03.62 | |
- eval_samples = 1955 | |
Github Repo: | |
- [Domain-Adaptation Project](https://github.com/adityaarunsinghal/Domain-Adaptation/) | |
--- | |