theainerd commited on
Commit
df4506c
1 Parent(s): 90cc307

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -30
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  language: hi
3
  datasets:
4
- - Interspeech 2021 : [Multilingual and code-switching ASR challenges for low resource Indian languages](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html).
5
  metrics:
6
  - wer
7
  tags:
@@ -10,20 +10,7 @@ tags:
10
  - speech
11
  - xlsr-fine-tuning-week
12
  license: apache-2.0
13
- model-index:
14
- - name: Hindi XLSR Wav2Vec2 Large 53
15
- results:
16
- - task:
17
- name: Speech Recognition
18
- type: automatic-speech-recognition
19
- dataset:
20
- name: interspeech 2021.
21
- type: interspeech
22
- args: hi
23
- metrics:
24
- - name: Test WER
25
- type: wer
26
- value: 72.62
27
  ---
28
 
29
  # Wav2Vec2-Large-XLSR-53-hindi
@@ -51,15 +38,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
51
  # Preprocessing the datasets.
52
  # We need to read the aduio files as arrays
53
  def speech_file_to_array_fn(batch):
54
- \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
55
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
56
- \treturn batch
57
 
58
  test_dataset = test_dataset.map(speech_file_to_array_fn)
59
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
60
 
61
  with torch.no_grad():
62
- \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
 
64
  predicted_ids = torch.argmax(logits, dim=-1)
65
 
@@ -87,30 +74,30 @@ processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hin
87
  model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
88
  model.to("cuda")
89
 
90
- chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' # TODO: adapt this list to include all special characters you removed from the data
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
94
  # We need to read the aduio files as arrays
95
  def speech_file_to_array_fn(batch):
96
- \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
- \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
98
- \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
99
- \treturn batch
100
 
101
  test_dataset = test_dataset.map(speech_file_to_array_fn)
102
 
103
  # Preprocessing the datasets.
104
  # We need to read the aduio files as arrays
105
  def evaluate(batch):
106
- \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
107
 
108
- \twith torch.no_grad():
109
- \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
110
 
111
- \tpred_ids = torch.argmax(logits, dim=-1)
112
- \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
113
- \treturn batch
114
 
115
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
116
 
 
1
  ---
2
  language: hi
3
  datasets:
4
+ - Interspeech 2021
5
  metrics:
6
  - wer
7
  tags:
 
10
  - speech
11
  - xlsr-fine-tuning-week
12
  license: apache-2.0
13
+ wer: 72.62
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ---
15
 
16
  # Wav2Vec2-Large-XLSR-53-hindi
 
38
  # Preprocessing the datasets.
39
  # We need to read the aduio files as arrays
40
  def speech_file_to_array_fn(batch):
41
+ \\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
42
+ \\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
43
+ \\treturn batch
44
 
45
  test_dataset = test_dataset.map(speech_file_to_array_fn)
46
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
47
 
48
  with torch.no_grad():
49
+ \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
50
 
51
  predicted_ids = torch.argmax(logits, dim=-1)
52
 
 
74
  model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
75
  model.to("cuda")
76
 
77
+ chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' # TODO: adapt this list to include all special characters you removed from the data
78
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
79
 
80
  # Preprocessing the datasets.
81
  # We need to read the aduio files as arrays
82
  def speech_file_to_array_fn(batch):
83
+ \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
84
+ \\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
85
+ \\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
86
+ \\treturn batch
87
 
88
  test_dataset = test_dataset.map(speech_file_to_array_fn)
89
 
90
  # Preprocessing the datasets.
91
  # We need to read the aduio files as arrays
92
  def evaluate(batch):
93
+ \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
94
 
95
+ \\twith torch.no_grad():
96
+ \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
97
 
98
+ \\tpred_ids = torch.argmax(logits, dim=-1)
99
+ \\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
100
+ \\treturn batch
101
 
102
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
103