Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
language: hi
|
3 |
datasets:
|
4 |
-
- Interspeech 2021
|
5 |
metrics:
|
6 |
- wer
|
7 |
tags:
|
@@ -10,20 +10,7 @@ tags:
|
|
10 |
- speech
|
11 |
- xlsr-fine-tuning-week
|
12 |
license: apache-2.0
|
13 |
-
|
14 |
-
- name: Hindi XLSR Wav2Vec2 Large 53
|
15 |
-
results:
|
16 |
-
- task:
|
17 |
-
name: Speech Recognition
|
18 |
-
type: automatic-speech-recognition
|
19 |
-
dataset:
|
20 |
-
name: interspeech 2021.
|
21 |
-
type: interspeech
|
22 |
-
args: hi
|
23 |
-
metrics:
|
24 |
-
- name: Test WER
|
25 |
-
type: wer
|
26 |
-
value: 72.62
|
27 |
---
|
28 |
|
29 |
# Wav2Vec2-Large-XLSR-53-hindi
|
@@ -51,15 +38,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
51 |
# Preprocessing the datasets.
|
52 |
# We need to read the aduio files as arrays
|
53 |
def speech_file_to_array_fn(batch):
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
59 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
60 |
|
61 |
with torch.no_grad():
|
62 |
-
|
63 |
|
64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
65 |
|
@@ -87,30 +74,30 @@ processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hin
|
|
87 |
model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
|
88 |
model.to("cuda")
|
89 |
|
90 |
-
chars_to_ignore_regex = '[
|
91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
|
93 |
# Preprocessing the datasets.
|
94 |
# We need to read the aduio files as arrays
|
95 |
def speech_file_to_array_fn(batch):
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
|
101 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
102 |
|
103 |
# Preprocessing the datasets.
|
104 |
# We need to read the aduio files as arrays
|
105 |
def evaluate(batch):
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
|
115 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
116 |
|
|
|
1 |
---
|
2 |
language: hi
|
3 |
datasets:
|
4 |
+
- Interspeech 2021
|
5 |
metrics:
|
6 |
- wer
|
7 |
tags:
|
|
|
10 |
- speech
|
11 |
- xlsr-fine-tuning-week
|
12 |
license: apache-2.0
|
13 |
+
wer: 72.62
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
# Wav2Vec2-Large-XLSR-53-hindi
|
|
|
38 |
# Preprocessing the datasets.
|
39 |
# We need to read the aduio files as arrays
|
40 |
def speech_file_to_array_fn(batch):
|
41 |
+
\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
42 |
+
\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
43 |
+
\\treturn batch
|
44 |
|
45 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
46 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
47 |
|
48 |
with torch.no_grad():
|
49 |
+
\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
50 |
|
51 |
predicted_ids = torch.argmax(logits, dim=-1)
|
52 |
|
|
|
74 |
model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
|
75 |
model.to("cuda")
|
76 |
|
77 |
+
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' # TODO: adapt this list to include all special characters you removed from the data
|
78 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
79 |
|
80 |
# Preprocessing the datasets.
|
81 |
# We need to read the aduio files as arrays
|
82 |
def speech_file_to_array_fn(batch):
|
83 |
+
\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
84 |
+
\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
85 |
+
\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
86 |
+
\\treturn batch
|
87 |
|
88 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
89 |
|
90 |
# Preprocessing the datasets.
|
91 |
# We need to read the aduio files as arrays
|
92 |
def evaluate(batch):
|
93 |
+
\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
94 |
|
95 |
+
\\twith torch.no_grad():
|
96 |
+
\\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
97 |
|
98 |
+
\\tpred_ids = torch.argmax(logits, dim=-1)
|
99 |
+
\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
100 |
+
\\treturn batch
|
101 |
|
102 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
103 |
|