thean's picture
Update README.md
a6d09f4
metadata
license: afl-3.0
tags:
  - generated_from_trainer
model-index:
  - name: swinv2-tiny-patch4-window8-256-finetuned-THFOOD-50
    results: []
datasets:
  - thean/THFOOD-50
widget:
  - src: >-
      https://huggingface.co/datasets/thean/sample_images/resolve/main/FriedChicken.jpg
    example_title: Fried Chicken
  - src: >-
      https://huggingface.co/datasets/thean/sample_images/resolve/main/Dumpling.jpg
    example_title: Dumpling
  - src: >-
      https://huggingface.co/datasets/thean/sample_images/resolve/main/CurriedFishCake.jpg
    example_title: Curried Fish Cake
  - src: >-
      https://huggingface.co/datasets/thean/sample_images/resolve/main/MasssamanGai.jpg
    example_title: Masssaman Gai
  - src: >-
      https://huggingface.co/datasets/thean/sample_images/resolve/main/EggsStewed.jpg
    example_title: Eggs Stewed
  - src: >-
      https://huggingface.co/datasets/thean/sample_images/resolve/main/KhanomJeenNamYaKati.jpg
    example_title: Khanom Jeen Nam Ya Kati
  - src: >-
      https://huggingface.co/datasets/thean/sample_images/resolve/main/GaengJued.jpg
    example_title: Gaeng Jued
metrics:
  - accuracy
library_name: transformers

swinv2-tiny-patch4-window8-256-finetuned-THFOOD-50

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the THFOOD-50 dataset. It achieves the following results on the:
Train set

  • Loss: 0.1669
  • Accuracy: 0.9557

Validation set

  • Loss: 0.2535
  • Accuracy: 0.9344

Test set

  • Loss: 0.2669
  • Accuracy: 0.9292

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.6558 0.99 47 3.1956 0.28
1.705 1.99 94 1.1701 0.6787
0.9805 2.98 141 0.6492 0.8125
0.7925 4.0 189 0.4724 0.8644
0.6169 4.99 236 0.4129 0.8738
0.5343 5.99 283 0.3717 0.8825
0.5196 6.98 330 0.3654 0.8906
0.5059 8.0 378 0.3267 0.8969
0.4432 8.99 425 0.2996 0.9081
0.3819 9.99 472 0.3056 0.9087
0.3627 10.98 519 0.2796 0.9213
0.3505 12.0 567 0.2753 0.915
0.3224 12.99 614 0.2830 0.9206
0.3206 13.99 661 0.2797 0.9231
0.3141 14.98 708 0.2569 0.9287
0.2946 16.0 756 0.2582 0.9319
0.3008 16.99 803 0.2583 0.9337
0.2356 17.99 850 0.2567 0.9281
0.2954 18.98 897 0.2581 0.9319
0.2628 19.89 940 0.2535 0.9344

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3