metadata
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: TinyLlama-v2ray
results: []
datasets:
- TheBossLevel123/v2ray
library_name: transformers
widget:
- text: |-
<|im_start|>user
Who are you?<|im_end|>
<|im_start|>assistant
example_title: First Example
- text: |-
<|im_start|>user
how much do you goon?<|im_end|>
<|im_start|>assistant
example_title: Second Example
TinyLlama-v2ray
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v0.6 on the TheBossLevel123/v2ray dataset.
Model description
Prompt format is as follows:
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
The model is intended to mimic the behavior of v2ray, so results will most likely be nonsensical or gibberish.
Example Usage
import torch
from transformers import pipeline, AutoTokenizer
import re
tokenizer = AutoTokenizer.from_pretrained("TheBossLevel123/TinyLlama-v2ray")
pipe = pipeline("text-generation", model="TheBossLevel123/TinyLlama-v2ray", torch_dtype=torch.bfloat16, device_map="auto")
def formatted_prompt(prompt)-> str:
return f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant"
def extract_text(text):
pattern = r'v2ray\n(.*?)(?=<\|im_end\|>)'
match = re.search(pattern, text, re.DOTALL)
if match:
return f"Output: {match.group(1)}"
else:
return "No match found"
prompt = 'what are your thoughts on ccp'
outputs = pipe(formatted_prompt(prompt), max_new_tokens=50, do_sample=True, temperature=0.9)
if outputs and "generated_text" in outputs[0]:
text = extract_text(outputs[0]["generated_text"])
print(f"Prompt: {prompt}")
print("")
print(text)
else:
print("No output or unexpected structure")
#Prompt: what are ur thoughts on ccp
#
#Output: <Re: insaneness> you are a ccp
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 1000
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0