theprint's picture
Update README.md
b44f3df verified
|
raw
history blame
4.37 kB
metadata
library_name: transformers
tags:
  - mergekit
  - merge
base_model:
  - theprint/WorldBuilder-7B
  - theprint/ReWiz-7B
model-index:
  - name: ReWiz-Worldbuilder-7B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 25.1
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Worldbuilder-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 25.08
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Worldbuilder-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 2.95
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Worldbuilder-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 2.57
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Worldbuilder-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 16.39
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Worldbuilder-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 21.9
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/ReWiz-Worldbuilder-7B
          name: Open LLM Leaderboard

Half the data was geared towards better reasoning (EvolKit-20k and reasoning-base-20k), the other half will help to de-censor the model (WizardLM data set).

Merge

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the SLERP merge method.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

slices:
  - sources:
      - model: theprint/ReWiz-7B
        layer_range: [0, 32]
      - model: theprint/WorldBuilder-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: theprint/ReWiz-7B
parameters:
  t:
    - filter: self_attn
      value: [0.1, 0.5, 0.3, 0.7, 0.9]
    - filter: mlp
      value: [0.9, 0.5, 0.7, 0.3, 0.1]
    - value: 0.5
dtype: bfloat16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 15.66
IFEval (0-Shot) 25.10
BBH (3-Shot) 25.08
MATH Lvl 5 (4-Shot) 2.95
GPQA (0-shot) 2.57
MuSR (0-shot) 16.39
MMLU-PRO (5-shot) 21.90