3v324v23's picture
lfs
1e3b872
raw
history blame
4.3 kB
import os,io
from PIL import Image, ImageOps
import numpy as np
import torch
import folder_paths
import base64
from io import BytesIO
# Tensor to PIL
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
def base64_save(base64_data):
# base64_data = "..."
data = base64_data.split(",")[1]
decoded_data = base64.b64decode(data)
# 保存图像为本地文件
image = Image.open(BytesIO(decoded_data))
# image.save(fp)
image,mask=load_image(image)
return (image,mask)
# # 把白色部分处理成黑色
# def convert_to_bw(image):
# # 读取图片
# # image = Image.open(image_path)
# # 获取图片的宽度和高度
# width, height = image.size
# # 遍历图片的每个像素点
# for x in range(width):
# for y in range(height):
# # 获取当前像素点的RGB值
# r, g, b = image.getpixel((x, y))
# # 判断当前像素点是否为白色
# if r == 255 and g == 255 and b == 255:
# # 将白色部分处理成黑色
# image.putpixel((x, y), (0, 0, 0))
# else:
# # 将非白色部分处理成白色
# image.putpixel((x, y), (255, 255, 255))
# # 转换为黑白图
# mask = image.convert("L")
# # # 保存处理后的图片
# # image.save("black_white_image.jpg")
# # print("图片处理完成!")
# return mask
def load_image(i,white_bg=False):
# i = Image.open(fp)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
if white_bg==True:
nw = mask.unsqueeze(0).unsqueeze(-1).repeat(1, 1, 1, 3)
# 将mask的黑色部分对image进行白色处理
image[nw == 1] = 1.0
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
return (image,mask)
class ScreenShareNode:
@classmethod
def INPUT_TYPES(s):
return { "required":{
"image_base64": ("CHEESE",),
"refresh_rate": ("INT", {"default": 500, "min": 0,"step": 50, "max": 0xffffffffffffffff}),
},
"optional":{
"prompt": ("PROMPT",),
"slide": ("SLIDE",),
"seed": ("SEED",),
# "seed": ("INT", {"default": 1, "min": 0, "max": 0xffffffffffffffff}),
} }
RETURN_TYPES = ('IMAGE','STRING','FLOAT',"INT")
RETURN_NAMES = ("current frame (image)","prompt","denoise (float)","seed (int)")
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Screen"
# INPUT_IS_LIST = True
OUTPUT_IS_LIST = (False,False,False,False)
# 运行的函数
def run(self,image_base64,refresh_rate ,prompt,slide,seed):
im,mask=base64_save(image_base64)
# print('##########prompt',prompt)
return {"ui":{"refresh_rate": [refresh_rate]},"result": (im,prompt,slide,seed,)}
class FloatingVideo:
@classmethod
def INPUT_TYPES(s):
return { "required":{
"image": ("IMAGE",)
}, }
# RETURN_TYPES = ('IMAGE','MASK')
RETURN_TYPES = ()
OUTPUT_NODE = True
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Screen"
# INPUT_IS_LIST = True
# OUTPUT_IS_LIST = (False,False,)
# 运行的函数
def run(self,image):
results = list()
for im in image:
im=tensor2pil(im)
# image_base64 = base64.b64encode(image.tobytes())
buffered = BytesIO()
im.save(buffered, format="JPEG")
image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
results.append(image_base64)
return { "ui": { "images_": results } }
# class SildeNode:
# CATEGORY = "quicknodes"
# @classmethod
# def INPUT_TYPES(s):
# return { "required":{} }
# RETURN_TYPES = ()
# RETURN_NAMES = ()
# FUNCTION = "func"
# def func(self):
# return ()