3v324v23's picture
lfs
1e3b872
import os,platform
import re,random,json
from PIL import Image
import numpy as np
# FONT_PATH= os.path.abspath(os.path.join(os.path.dirname(__file__),'../assets/王汉宗颜楷体繁.ttf'))
import folder_paths
import matplotlib.font_manager as fm
import torch
import importlib.util
def create_incrementing_list(min_value, max_value, step, count):
l1 = [int(min_value + i * step) for i in range(count) if min_value + i * step <= max_value]
l2 = [float(min_value + i * step) for i in range(count) if min_value + i * step <= max_value]
return (l1,l2)
def split_list(lst, chunk_size, transition_size):
result = []
for i in range(0, len(lst), chunk_size):
start = i - transition_size
end = i + chunk_size + transition_size
result.append(lst[max(start, 0):end])
return result
def recursive_search(directory, excluded_dir_names=None):
if not os.path.isdir(directory):
return [], {}
if excluded_dir_names is None:
excluded_dir_names = []
result = []
dirs = {directory: os.path.getmtime(directory)}
for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True):
subdirs[:] = [d for d in subdirs if d not in excluded_dir_names]
for file_name in filenames:
relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory)
result.append(relative_path)
for d in subdirs:
path = os.path.join(dirpath, d)
dirs[path] = os.path.getmtime(path)
return result, dirs
def filter_files_extensions(files, extensions):
return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions or len(extensions) == 0, files)))
def get_system_font_path():
ps=[]
system = platform.system()
if system == "Windows":
ps.append(os.path.join(os.environ["WINDIR"], "Fonts"))
elif system == "Darwin":
ps.append(os.path.join("/Library", "Fonts"))
elif system == "Linux":
ps.append(os.path.join("/usr", "share", "fonts"))
ps.append(os.path.join("/usr", "local", "share", "fonts"))
ps=[p for p in ps if os.path.exists(p)]
file_paths=[]
for f in ps:
result, dirs=recursive_search(f)
for r in result:
file_paths.append(r)
file_paths=filter_files_extensions(file_paths,[".otf", ".ttf"])
return file_paths
# import json
# import hashlib
# def get_json_hash(json_content):
# json_string = json.dumps(json_content, sort_keys=True)
# hash_object = hashlib.sha256(json_string.encode())
# hash_value = hash_object.hexdigest()
# return hash_value
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
def create_temp_file(image):
output_dir = folder_paths.get_temp_directory()
(
full_output_folder,
filename,
counter,
subfolder,
_,
) = folder_paths.get_save_image_path('tmp', output_dir)
im=tensor2pil(image)
image_file = f"{filename}_{counter:05}.png"
image_path=os.path.join(full_output_folder, image_file)
im.save(image_path,compress_level=4)
return [{
"filename": image_file,
"subfolder": subfolder,
"type": "temp"
}]
def get_font_files(directory):
font_files = {}
# 从指定目录加载字体
for file in os.listdir(directory):
if file.endswith('.ttf') or file.endswith('.otf'):
font_name = os.path.splitext(file)[0]
font_path = os.path.join(directory, file)
font_files[font_name] = os.path.abspath(font_path)
# 尝试获取系统字体
try:
font_paths = get_system_font_path()
for file in font_paths:
try:
font_name = os.path.splitext(file)[0]
font_path = file
font_files[font_name] = os.path.abspath(font_path)
except Exception as e:
print(f"Error processing font {file}: {e}")
except Exception as e:
print(f"Error finding system fonts: {e}")
return font_files
r_directory = os.path.join(os.path.dirname(__file__), '../assets/')
font_files = get_font_files(r_directory)
# print(font_files)
def flatten_list(nested_list):
flat_list = []
for item in nested_list:
if isinstance(item, list):
flat_list.extend(flatten_list(item))
else:
if torch.is_tensor(item):
print('item.shape',item.shape)
for i in range(item.shape[0]):
flat_list.append(item[i:i + 1, ...])
else:
flat_list.append(item)
return flat_list
class ColorInput:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"color":("TCOLOR",),
},
}
RETURN_TYPES = ("STRING","INT","INT","INT","FLOAT",)
RETURN_NAMES = ("hex","r","g","b","a",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Color"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,False,False,False,False,)
def run(self,color):
h=color['hex']
r=color['r']
g=color['g']
b=color['b']
a=color['a']
return (h,r,g,b,a,)
class FontInput:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"font": (list(font_files.keys()),),
},
}
RETURN_TYPES = ("STRING",)
# RETURN_NAMES = ("WIDTH","HEIGHT","X","Y",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Input"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,)
def run(self,font):
return (font_files[font],)
class TextToNumber:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"text": ("STRING",{"multiline": False,"default": "1"}),
"random_number": (["enable", "disable"],),
"max_num":("INT", {
"default": 10,
"min":2, #Minimum value
"max": 10000000000, #Maximum value
"step": 1, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
},
"optional":{
"seed": (any_type, {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
}
}
RETURN_TYPES = ("INT",)
# RETURN_NAMES = ("WIDTH","HEIGHT","X","Y",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Text"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,)
def run(self,text,random_number,max_num,seed=0):
numbers = re.findall(r'\d+', text)
result=0
for n in numbers:
result = int(n)
# print(result)
if random_number=='enable' and result>0:
result= random.randint(1, max_num)
return {"ui": {"text": [text],"num":[result]}, "result": (result,)}
class FloatSlider:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"number":("FLOAT", {
"default": 0,
"min": 0, #Minimum value
"max": 0xffffffffffffffff, #Maximum value
"step": 0.001, #Slider's step
"display": "slider" # Cosmetic only: display as "number" or "slider"
}),
"min_value":("FLOAT", {
"default": 0,
"min": -0xffffffffffffffff,
"max": 0xffffffffffffffff,
"step": 0.001,
"display": "number"
}),
"max_value":("FLOAT", {
"default": 1,
"min": -0xffffffffffffffff,
"max": 0xffffffffffffffff,
"step": 0.001,
"display": "number"
}),
"step":("FLOAT", {
"default": 0.001,
"min": -0xffffffffffffffff,
"max": 0xffffffffffffffff,
"step": 0.001,
"display": "number"
}),
},
}
RETURN_TYPES = ("FLOAT",)
RETURN_NAMES = ('FLOAT',)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Input"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,)
def run(self, number, min_value, max_value, step):
if number < min_value:
number = min_value
elif number > max_value:
number = max_value
return (number,)
class IntNumber:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"number":("INT", {
"default": 0,
"min": -1, #Minimum value
"max": 0xffffffffffffffff,
"step": 1,
"display": "number"
}),
"min_value":("INT", {
"default": 0,
"min": -0xffffffffffffffff,
"max": 0xffffffffffffffff,
"step": 1,
"display": "number"
}),
"max_value":("INT", {
"default": 1,
"min": -0xffffffffffffffff,
"max": 0xffffffffffffffff,
"step": 1,
"display": "number"
}),
"step":("INT", {
"default": 1,
"min": -0xffffffffffffffff,
"max": 0xffffffffffffffff,
"step":1,
"display": "number"
}),
},
}
RETURN_TYPES = ("INT",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Input"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,)
def run(self,number,min_value,max_value,step):
if number < min_value:
number= min_value
elif number > max_value:
number= max_value
return (number,)
class MultiplicationNode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"numberA":(any_type,),
"multiply_by":("FLOAT", {
"default": 1,
"min": -2, #Minimum value
"max": 0xffffffffffffffff,
"step": 0.01, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
"add_by":("FLOAT", {
"default": 0,
"min": -2000, #Minimum value
"max": 0xffffffffffffffff,
"step": 0.01, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
})
},
}
RETURN_TYPES = ("FLOAT","INT",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Utils"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,False,)
def run(self,numberA,multiply_by,add_by):
b=int(numberA*multiply_by+add_by)
a=float(numberA*multiply_by+add_by)
return (a,b,)
class TextInput:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"text": ("STRING",{"multiline": True,"default": ""})
},
}
RETURN_TYPES = ("STRING",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Input"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,)
def run(self,text):
return (text,)
class IncrementingListNode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"min_value": ("FLOAT", {
"default": 0,
"min": -2000, #Minimum value
"max": 0xffffffffffffffff,
"step": 0.01, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
"max_value": ("FLOAT", {
"default": 10,
"min": -2000, #Minimum value
"max": 0xffffffffffffffff,
"step": 0.01, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
"step": ("FLOAT", {
"default": 0,
"min": -2000, #Minimum value
"max": 0xffffffffffffffff,
"step": 0.01, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
}),
"count": ("INT", {
"default": 1,
"min": 1, #Minimum value
"max": 0xffffffffffffffff,
"step":1, #Slider's step
"display": "number" # Cosmetic only: display as "number" or "slider"
})
},
"optional":{
"seed":("INT", {"default": -1, "min": -1, "max": 1000000}),
},
}
RETURN_TYPES = ("INT","FLOAT",)
RETURN_NAMES = ('int_list','float_list',)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Video"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (True,True,)
def run(self,min_value,max_value,step,count,seed):
print('create_incrementing_list',seed)
l1,l2=create_incrementing_list(min_value,max_value,step,count)
return (l1,l2,)
# 接收一个值,然后根据字符串或数值长度计算延迟时间,用户可以自定义延迟"字/s",延迟之后将转化
import comfy.samplers
import folder_paths
# import time
class AnyType(str):
"""A special class that is always equal in not equal comparisons. Credit to pythongosssss"""
def __ne__(self, __value: object) -> bool:
return False
any_type = AnyType("*")
import time
class DynamicDelayProcessor:
@classmethod
def INPUT_TYPES(cls):
# print("print INPUT_TYPES",cls)
return {
"required":{
"delay_seconds":("INT",{
"default":1,
"min": 0,
"max": 1000000,
}),
},
"optional":{
"any_input":(any_type,),
"delay_by_text":("STRING",{"multiline":True,"dynamicPrompts": False,}),
"words_per_seconds":("FLOAT",{ "default":1.50,"min": 0.0,"max": 1000.00,"display":"Chars per second?"}),
"replace_output": (["disable","enable"],),
"replace_value":("INT",{ "default":-1,"min": 0,"max": 1000000,"display":"Replacement value"})
}
}
@classmethod
def calculate_words_length(cls,text):
chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]')
english_word_pattern = re.compile(r'\b[a-zA-Z]+\b')
number_pattern = re.compile(r'\b[0-9]+\b')
words_length = 0
for segment in text.split():
if chinese_char_pattern.search(segment):
# 中文字符,每个字符计为 1
words_length += len(segment)
elif number_pattern.match(segment):
# 数字,每个字符计为 1
words_length += len(segment)
elif english_word_pattern.match(segment):
# 英文单词,整个单词计为 1
words_length += 1
return words_length
FUNCTION = "run"
RETURN_TYPES = (any_type,)
RETURN_NAMES = ('output',)
CATEGORY = "♾️Mixlab/Utils"
def run(self,any_input,delay_seconds,delay_by_text,words_per_seconds,replace_output,replace_value):
# print(f"Delay text:",delay_by_text )
# 获取开始时间戳
start_time = time.time()
# 计算延迟时间
delay_time = delay_seconds
if delay_by_text and isinstance(delay_by_text, str) and words_per_seconds > 0:
words_length = self.calculate_words_length(delay_by_text)
print(f"Delay text: {delay_by_text}, Length: {words_length}")
delay_time += words_length / words_per_seconds
# 延迟执行
print(f"延迟执行: {delay_time}")
time.sleep(delay_time)
# 获取结束时间戳并计算间隔
end_time = time.time()
elapsed_time = end_time - start_time
print(f"实际延迟时间: {elapsed_time} 秒")
# 根据 replace_output 决定输出值
return (max(0, replace_value),) if replace_output == "enable" else (any_input,)
# app 配置节点
class AppInfo:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"name": ("STRING",{"multiline": False,"default": "Mixlab-App","dynamicPrompts": False}),
"input_ids":("STRING",{"multiline": True,"default": "\n".join(["1","2","3"]),"dynamicPrompts": False}),
"output_ids":("STRING",{"multiline": True,"default": "\n".join(["5","9"]),"dynamicPrompts": False}),
},
"optional":{
"image": ("IMAGE",),
"description":("STRING",{"multiline": True,"default": "","dynamicPrompts": False}),
"version":("INT", {
"default": 1,
"min": 1,
"max": 10000,
"step": 1,
"display": "number"
}),
"share_prefix":("STRING",{"multiline": False,"default": "","dynamicPrompts": False}),
"link":("STRING",{"multiline": False,"default": "https://","dynamicPrompts": False}),
"category":("STRING",{"multiline": False,"default": "","dynamicPrompts": False}),
"auto_save": (["enable","disable"],),
}
}
RETURN_TYPES = ()
# RETURN_NAMES = ("IMAGE",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab"
OUTPUT_NODE = True
INPUT_IS_LIST = True
# OUTPUT_IS_LIST = (True,)
def run(self,name,input_ids,output_ids,image,description,version,share_prefix,link,category,auto_save):
name=name[0]
im=None
if image:
im=image[0][0]
#TODO batch 的方式需要处理
im=create_temp_file(im)
# image [img,] img[batch,w,h,a] 列表里面是batch,
input_ids=input_ids[0]
output_ids=output_ids[0]
description=description[0]
version=version[0]
share_prefix=share_prefix[0]
link=link[0]
category=category[0]
# id=get_json_hash([name,im,input_ids,output_ids,description,version])
return {"ui": {"json": [name,im,input_ids,output_ids,description,version,share_prefix,link,category]}, "result": ()}
class SwitchByIndex:
@classmethod
def INPUT_TYPES(cls):
return {
"optional":{
"A":(any_type,),
"B":(any_type,),
},
"required": {
"index":("INT", {
"default": -1,
"min": -1,
"max": 1000,
"step": 1,
"display": "number"
}),
"flat": (['off',"on"],),
}
}
RETURN_TYPES = (any_type,"INT",)
RETURN_NAMES = ("list", "count",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Utils"
INPUT_IS_LIST = True
OUTPUT_IS_LIST = (True, False,)
def run(self, A=[],B=[],index=-1,flat='on'):
flat=flat[0]
C=[]
index=index[0]
for a in A:
C.append(a)
for b in B:
C.append(b)
if flat=='on':
C=flatten_list(C)
if index>-1:
try:
C=[C[index]]
except Exception as e:
C=[C[-1]] #最后一个
return (C, len(C),)
class ListSplit:
@classmethod
def INPUT_TYPES(cls):
return {
"optional":{
"A":(any_type,),
},
"required": {
"chunk_size": ("INT", {"default": 10, "min": 1, "step": 1}),
"transition_size": ("INT", {"default": 0, "min": 0, "step": 1}),
"index": ("INT", {"default": -1, "min": -1, "step": 1}),
}
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("B",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Utils"
INPUT_IS_LIST = True
OUTPUT_IS_LIST = (True,)
def run(self, A=[],chunk_size=[10],transition_size=[0],index=[-1]):
# print(len(A))
B=split_list(A,chunk_size[0],transition_size[0])
if index[0]>-1:
B=B[index[0]]
return (B,)
class LimitNumber:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"number":(any_type,),
"min_value":("INT", {
"default": 0,
"min": 0,
"max": 0xffffffffffffffff,
"step": 1,
"display": "number"
}),
"max_value":("INT", {
"default": 1,
"min": 1,
"max": 0xffffffffffffffff,
"step": 1,
"display": "number"
}),
}
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("number",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Input"
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,)
def run(self, number, min_value, max_value):
nn=number
if isinstance(number, int):
min_value=int(min_value)
max_value=int(max_value)
if isinstance(number, float):
min_value=float(min_value)
max_value=float(max_value)
if number < min_value:
nn= min_value
elif number > max_value:
nn= max_value
return (nn,)
class ListStatistics:
@staticmethod
def count_types(lst):
type_count = {}
for item in lst:
item_type = type(item).__name__
if item_type not in type_count:
type_count[item_type] = []
if item_type in ['dict', 'str', 'int', 'float']:
type_count[item_type].append(item)
return type_count
# # 示例列表
# my_list = [1, 'hello', {'name': 'John'}, 3.14, {'age': 25}, 'world', 10]
# # 创建ListStatistics对象
# list_stats = ListStatistics()
# # 调用count_types方法进行统计
# result = list_stats.count_types(my_list)
# # 输出结果
# for item_type, values in result.items():
# print(item_type + ':')
# for value in values:
# print(value)
# print('---')
class TESTNODE_:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"ANY":(any_type,),
},
}
RETURN_TYPES = (any_type,)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Test"
OUTPUT_NODE = True
INPUT_IS_LIST = True
OUTPUT_IS_LIST = (True,)
def run(self,ANY):
print(type(ANY))
try:
print(ANY[0].shape)
img= tensor2pil(ANY[0])
print(img.size)
except:
print('')
# data=ANY
list_stats = ListStatistics()
# 调用count_types方法进行统计
result = list_stats.count_types(ANY)
# 假设我们有一个模块文件名为 my_module.py,它位于 'importables' 目录下
module_path = os.path.join(os.path.dirname(__file__),'test.py')
# 使用 spec_from_file_location 获取模块的元数据(名称、定义等)
spec = importlib.util.spec_from_file_location('test', module_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
functions = getattr(module, 'run') # 获取函数
functions(ANY)
return {"ui": {"data": result,"type":[str(type(ANY[0]))]}, "result": (ANY,)}
class TESTNODE_TOKEN:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"text":("STRING", {"forceInput": True,}),
"clip": ("CLIP", )
},
}
RETURN_TYPES = ("STRING",)
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Test"
OUTPUT_NODE = True
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (False,)
def run(self,text,clip=None):
# print(text)
tokens = clip.tokenize(text)
tokens=[v for v in tokens.values()][0][0]
tokens=json.dumps(tokens)
return (tokens,)
class CreateSeedNode:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
}
}
RETURN_TYPES = ("INT",)
RETURN_NAMES = ("seed",)
OUTPUT_NODE = True
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Experiment"
def run(self, seed):
return (seed,)
class CreateCkptNames:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"ckpt_names": ("STRING",{"multiline": True,"default": "\n".join(folder_paths.get_filename_list("checkpoints")),"dynamicPrompts": False}),
}
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("ckpt_names",)
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (True,)
# OUTPUT_NODE = True
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Experiment"
def run(self, ckpt_names):
ckpt_names=ckpt_names.split('\n')
ckpt_names = [name for name in ckpt_names if name.strip()]
return (ckpt_names,)
class CreateLoraNames:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"lora_names": ("STRING",{"multiline": True,"default": "\n".join(folder_paths.get_filename_list("loras")),"dynamicPrompts": False}),
}
}
RETURN_TYPES = (any_type,"STRING",)
RETURN_NAMES = ("lora_names","prompt",)
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (True,True,)
# OUTPUT_NODE = True
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Experiment"
def run(self, lora_names):
lora_names=lora_names.split('\n')
lora_names = [name for name in lora_names if name.strip()]
prompts=[os.path.splitext(n)[0] for n in lora_names]
return (lora_names,prompts,)
class CreateSampler_names:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"sampler_names": ("STRING",{"multiline": True,"default": "\n".join(comfy.samplers.KSampler.SAMPLERS),"dynamicPrompts": False}),
}
}
RETURN_TYPES = (any_type,)
RETURN_NAMES = ("sampler_names",)
INPUT_IS_LIST = False
OUTPUT_IS_LIST = (True,)
# OUTPUT_NODE = True
FUNCTION = "run"
CATEGORY = "♾️Mixlab/Experiment"
def run(self, sampler_names):
sampler_names=sampler_names.split('\n')
sampler_names = [name for name in sampler_names if name.strip()]
return (sampler_names,)