|
--- |
|
license: mit |
|
base_model: unicamp-dl/ptt5-base-portuguese-vocab |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- tiagoblima/du-qg-squadv1_pt |
|
model-index: |
|
- name: t5_base-qg-ap-test |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5_base-qg-ap-test |
|
|
|
This model is a fine-tuned version of [unicamp-dl/ptt5-base-portuguese-vocab](https://huggingface.co/unicamp-dl/ptt5-base-portuguese-vocab) on the tiagoblima/du-qg-squadv1_pt dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0163 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 100.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| No log | 1.0 | 1 | 12.8054 | |
|
| No log | 2.0 | 2 | 10.7880 | |
|
| No log | 3.0 | 3 | 8.8731 | |
|
| No log | 4.0 | 4 | 7.4068 | |
|
| No log | 5.0 | 5 | 6.4581 | |
|
| No log | 6.0 | 6 | 5.6475 | |
|
| No log | 7.0 | 7 | 4.9596 | |
|
| No log | 8.0 | 8 | 4.5058 | |
|
| No log | 9.0 | 9 | 4.0768 | |
|
| No log | 10.0 | 10 | 3.7047 | |
|
| No log | 11.0 | 11 | 3.4143 | |
|
| No log | 12.0 | 12 | 3.1360 | |
|
| No log | 13.0 | 13 | 2.8866 | |
|
| No log | 14.0 | 14 | 2.6325 | |
|
| No log | 15.0 | 15 | 2.3889 | |
|
| No log | 16.0 | 16 | 2.1914 | |
|
| No log | 17.0 | 17 | 2.0424 | |
|
| No log | 18.0 | 18 | 1.9111 | |
|
| No log | 19.0 | 19 | 1.7763 | |
|
| No log | 20.0 | 20 | 1.6505 | |
|
| No log | 21.0 | 21 | 1.5257 | |
|
| No log | 22.0 | 22 | 1.4126 | |
|
| No log | 23.0 | 23 | 1.3109 | |
|
| No log | 24.0 | 24 | 1.2189 | |
|
| No log | 25.0 | 25 | 1.1338 | |
|
| No log | 26.0 | 26 | 1.0486 | |
|
| No log | 27.0 | 27 | 0.9640 | |
|
| No log | 28.0 | 28 | 0.8828 | |
|
| No log | 29.0 | 29 | 0.8060 | |
|
| No log | 30.0 | 30 | 0.7329 | |
|
| No log | 31.0 | 31 | 0.6639 | |
|
| No log | 32.0 | 32 | 0.6010 | |
|
| No log | 33.0 | 33 | 0.5439 | |
|
| No log | 34.0 | 34 | 0.4925 | |
|
| No log | 35.0 | 35 | 0.4471 | |
|
| No log | 36.0 | 36 | 0.4066 | |
|
| No log | 37.0 | 37 | 0.3690 | |
|
| No log | 38.0 | 38 | 0.3341 | |
|
| No log | 39.0 | 39 | 0.3023 | |
|
| No log | 40.0 | 40 | 0.2746 | |
|
| No log | 41.0 | 41 | 0.2470 | |
|
| No log | 42.0 | 42 | 0.2205 | |
|
| No log | 43.0 | 43 | 0.1968 | |
|
| No log | 44.0 | 44 | 0.1771 | |
|
| No log | 45.0 | 45 | 0.1593 | |
|
| No log | 46.0 | 46 | 0.1424 | |
|
| No log | 47.0 | 47 | 0.1288 | |
|
| No log | 48.0 | 48 | 0.1170 | |
|
| No log | 49.0 | 49 | 0.1070 | |
|
| No log | 50.0 | 50 | 0.0996 | |
|
| No log | 51.0 | 51 | 0.0939 | |
|
| No log | 52.0 | 52 | 0.0888 | |
|
| No log | 53.0 | 53 | 0.0845 | |
|
| No log | 54.0 | 54 | 0.0818 | |
|
| No log | 55.0 | 55 | 0.0790 | |
|
| No log | 56.0 | 56 | 0.0763 | |
|
| No log | 57.0 | 57 | 0.0732 | |
|
| No log | 58.0 | 58 | 0.0697 | |
|
| No log | 59.0 | 59 | 0.0666 | |
|
| No log | 60.0 | 60 | 0.0642 | |
|
| No log | 61.0 | 61 | 0.0611 | |
|
| No log | 62.0 | 62 | 0.0583 | |
|
| No log | 63.0 | 63 | 0.0560 | |
|
| No log | 64.0 | 64 | 0.0532 | |
|
| No log | 65.0 | 65 | 0.0512 | |
|
| No log | 66.0 | 66 | 0.0487 | |
|
| No log | 67.0 | 67 | 0.0464 | |
|
| No log | 68.0 | 68 | 0.0431 | |
|
| No log | 69.0 | 69 | 0.0399 | |
|
| No log | 70.0 | 70 | 0.0381 | |
|
| No log | 71.0 | 71 | 0.0364 | |
|
| No log | 72.0 | 72 | 0.0348 | |
|
| No log | 73.0 | 73 | 0.0333 | |
|
| No log | 74.0 | 74 | 0.0316 | |
|
| No log | 75.0 | 75 | 0.0299 | |
|
| No log | 76.0 | 76 | 0.0285 | |
|
| No log | 77.0 | 77 | 0.0274 | |
|
| No log | 78.0 | 78 | 0.0264 | |
|
| No log | 79.0 | 79 | 0.0253 | |
|
| No log | 80.0 | 80 | 0.0242 | |
|
| No log | 81.0 | 81 | 0.0236 | |
|
| No log | 82.0 | 82 | 0.0231 | |
|
| No log | 83.0 | 83 | 0.0229 | |
|
| No log | 84.0 | 84 | 0.0226 | |
|
| No log | 85.0 | 85 | 0.0223 | |
|
| No log | 86.0 | 86 | 0.0218 | |
|
| No log | 87.0 | 87 | 0.0212 | |
|
| No log | 88.0 | 88 | 0.0205 | |
|
| No log | 89.0 | 89 | 0.0198 | |
|
| No log | 90.0 | 90 | 0.0192 | |
|
| No log | 91.0 | 91 | 0.0186 | |
|
| No log | 92.0 | 92 | 0.0181 | |
|
| No log | 93.0 | 93 | 0.0177 | |
|
| No log | 94.0 | 94 | 0.0173 | |
|
| No log | 95.0 | 95 | 0.0170 | |
|
| No log | 96.0 | 96 | 0.0168 | |
|
| No log | 97.0 | 97 | 0.0166 | |
|
| No log | 98.0 | 98 | 0.0165 | |
|
| No log | 99.0 | 99 | 0.0164 | |
|
| 1.4009 | 100.0 | 100 | 0.0163 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|