tiennvcs's picture
Fine tuning BERT large for InfoVQA
7362c88
metadata
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: bert-large-uncased-finetuned-infovqa
    results:
      - task:
          name: Question Answering
          type: question-answering

bert-large-uncased-finetuned-infovqa

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 6.3170

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 250500
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss
3.7861 0.12 1000 3.2778
3.2186 0.23 2000 3.0658
2.8504 0.35 3000 3.0456
2.8621 0.46 4000 2.8758
2.7851 0.58 5000 2.8680
2.8016 0.69 6000 2.9244
2.7592 0.81 7000 2.7735
2.5737 0.93 8000 2.7640
2.3493 1.04 9000 2.7257
2.1041 1.16 10000 2.8442
2.1713 1.27 11000 2.7723
2.0594 1.39 12000 2.9982
2.1825 1.5 13000 2.8272
2.2486 1.62 14000 2.8897
2.097 1.74 15000 2.8557
2.1645 1.85 16000 2.6342
2.15 1.97 17000 2.8680
1.5662 2.08 18000 3.2126
1.6168 2.2 19000 3.1646
1.5886 2.32 20000 3.3139
1.6539 2.43 21000 3.2610
1.6486 2.55 22000 3.3144
1.637 2.66 23000 3.0437
1.7186 2.78 24000 2.9936
1.7543 2.89 25000 3.1641
1.5301 3.01 26000 4.0560
1.1436 3.13 27000 4.0116
1.1902 3.24 28000 4.0240
1.2728 3.36 29000 4.3068
1.2586 3.47 30000 3.7894
1.3164 3.59 31000 3.9242
1.3093 3.7 32000 4.0444
1.2812 3.82 33000 4.1779
1.3165 3.94 34000 3.6633
0.8357 4.05 35000 5.8137
0.9583 4.17 36000 5.3305
0.9135 4.28 37000 5.4973
1.0011 4.4 38000 5.0349
0.9553 4.51 39000 5.2086
1.0182 4.63 40000 5.1197
0.9569 4.75 41000 5.4579
0.9437 4.86 42000 5.4467
0.9791 4.98 43000 4.7657
0.648 5.09 44000 6.5780
0.7528 5.21 45000 6.2827
0.7247 5.33 46000 6.8500
0.702 5.44 47000 6.4572
0.6786 5.56 48000 6.5462
0.7272 5.67 49000 6.2406
0.6778 5.79 50000 6.4727
0.6446 5.9 51000 6.3170

Framework versions

  • Transformers 4.10.0
  • Pytorch 1.8.0+cu101
  • Datasets 1.11.0
  • Tokenizers 0.10.3