Falcon3-10B-Base / README.md
puneeshkhanna's picture
Adding Evaluation Results (#6)
34bb99a verified
metadata
language:
  - en
  - fr
  - es
  - pt
license: other
library_name: transformers
tags:
  - falcon3
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
model-index:
  - name: Falcon3-10B-Base
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 36.48
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Base
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 41.38
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Base
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 24.77
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Base
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 12.75
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Base
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 14.17
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Base
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 36
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Base
          name: Open LLM Leaderboard
drawing

Falcon3-10B-Base

Falcon3 family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B parameters.

This repository contains the Falcon3-10B-Base. It achieves state-of-the-art results (at the time of release) on reasoning, language understanding, instruction following, code and mathematics tasks. Falcon3-10B-Base supports 4 languages (English, French, Spanish, Portuguese) and a context length of up to 32K.

⚠️ This is a raw, pretrained model, which should be further finetuned using SFT, RLHF, continued pretraining, etc. for most use cases.

Model Details

  • Architecture
    • Transformer-based causal decoder-only architecture
    • 40 decoder blocks
    • Grouped Query Attention (GQA) for faster inference: 12 query heads and 4 key-value heads
    • Wider head dimension: 256
    • High RoPE value to support long context understanding: 1000042
    • Uses SwiGLu and RMSNorm
    • 32K context length
    • 131K vocab size
  • Depth up-scaled from Falcon3-7B-Base with continual pretraining on 2 Teratokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 1024 H100 GPU chips
  • Supports EN, FR, ES, PT
  • Developed by Technology Innovation Institute
  • License: TII Falcon-LLM License 2.0
  • Model Release Date: December 2024

Getting started

Click to expand
import torch
from transformers import pipeline

pipe = pipeline(
    "text-generation", 
    model="tiiuae/Falcon3-10B-Base", 
    torch_dtype=torch.bfloat16, 
    device_map="auto"
)
response = pipe("Question: How many hours in one day? Answer: ")
print(response[0]['generated_text'])

Benchmarks

We report in the following table our internal pipeline benchmarks.

Category Benchmark Gemma2-9B Yi1.5-9B Mistral-Nemo-Base-2407 (12B) Falcon3-10B-Base
General MMLU (5-shot) 70.8 69.6 68.8 73.1
MMLU-PRO (5-shot) 41.4 39.3 34.7 42.5
IFEval 21.3 29.1 16.1 36.4
Math GSM8K (5-shot) 69.1 63.8 55.3 81.4
MATH Lvl-5 (4-shot) 10.5 9.2 4.9 22.9
Reasoning Arc Challenge (25-shot) 67.5 61.7 64.4 66.8
GPQA (0-shot) 33.4 36.6 28.8 34.1
MUSR (0-shot) 45.3 43.3 39.2 44.2
BBH (3-shot) 54.3 51.3 50.2 59.7
CommonSense Understanding PIQA (0-shot) 83.0 80.5 82.1 79.4
SciQ (0-shot) 97.1 95.2 95.2 93.5
Winogrande (0-shot) 74.2 72.7 73.2 73.6
OpenbookQA (0-shot) 47.2 45.2 47.2 45.0

Useful links

Technical Report

Coming soon....

Citation

If the Falcon3 family of models were helpful to your work, feel free to give us a cite.

@misc{Falcon3,
    title = {The Falcon 3 Family of Open Models},
    url = {https://huggingface.co/blog/falcon3},
    author = {Falcon-LLM Team},
    month = {December},
    year = {2024}
}

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 27.59
IFEval (0-Shot) 36.48
BBH (3-Shot) 41.38
MATH Lvl 5 (4-Shot) 24.77
GPQA (0-shot) 12.75
MuSR (0-shot) 14.17
MMLU-PRO (5-shot) 36.00