Falcon3-3B-Base / README.md
Dhia-GB's picture
Fix typo in Minitron GPQA score.
092c29e verified
---
language:
- en
- fr
- es
- pt
tags:
- falcon3
license: other
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
library_name: transformers
---
<div align="center">
<img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/>
</div>
# Falcon3-3B-Base
**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B parameters.
This repository contains the **Falcon3-3B-Base**. It achieves strong results on reasoning, language understanding, instruction following, code and mathematics tasks.
Falcon3-3B-Base supports 4 languages (English, French, Spanish, Portuguese) and a context length of up to 8K.
It was pruned in terms of depth and width from Falcon3-7B-Base and was efficiently trained on only 100 GT using a knowledge distillation objective.
⚠️ **This is a raw, pretrained model, which should be further finetuned using SFT, RLHF, continued pretraining, etc. for most use cases.**
## Model Details
- Architecture
- Transformer-based causal decoder-only architecture
- 22 decoder blocks
- Grouped Query Attention (GQA) for faster inference: 12 query heads and 4 key-value heads
- Wider head dimension: 256
- High RoPE value to support long context understanding: 1000042
- Uses SwiGLU and RMSNorm
- 8K context length
- 131K vocab size
- Pruned and healed from Falcon3-7B-Base on only 100 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 1024 H100 GPU chips
- Supports EN, FR, ES, PT
- Developed by [Technology Innovation Institute](https://www.tii.ae)
- License: TII Falcon-LLM License 2.0
- Model Release Date: December 2024
## Getting started
<details>
<summary> Click to expand </summary>
```python
import torch
from transformers import pipeline
pipe = pipeline(
"text-generation",
model="tiiuae/Falcon3-3B-Base",
torch_dtype=torch.bfloat16,
device_map="auto"
)
response = pipe("Question: How many hours in one day? Answer: ")
print(response[0]['generated_text'])
```
</details>
<br>
## Benchmarks
We report in the following table our internal pipeline benchmarks.
- We use [lm-evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness).
- We report **raw scores**.
- We use same batch-size across all models.
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
<colgroup>
<col style="width: 10%;">
<col style="width: 10%;">
<col style="width: 7%;">
<col style="width: 7%;">
<col style="width: 7%;">
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
</colgroup>
<thead>
<tr>
<th>Category</th>
<th>Benchmark</th>
<th>Llama3.2-3B</th>
<th>Qwen2.5-3B</th>
<th>Minitron-4B</th>
<th>Falcon3-3B-Base</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3">General</td>
<td>MMLU (5-shot)</td>
<td>56.1</td>
<td><b>65.6</b></td>
<td>58.7</td>
<td>55.5</td>
</tr>
<tr>
<td>MMLU-PRO (5-shot)</td>
<td>24.9</td>
<td><b>32</b></td>
<td>26.2</td>
<td>28.8</td>
</tr>
<tr>
<td>IFEval</td>
<td>12.8</td>
<td>27</td>
<td>22.8</td>
<td><b>27.7</b></td>
</tr>
<tr>
<td rowspan="2">Math</td>
<td>GSM8K (5-shot)</td>
<td>26.7</td>
<td><b>69</b></td>
<td>25.7</td>
<td>63.9</td>
</tr>
<tr>
<td>MATH Lvl-5 (4-shot)</td>
<td>1.4</td>
<td>8.4</td>
<td>1.7</td>
<td><b>9.4</b></td>
</tr>
<tr>
<td rowspan="4">Reasoning</td>
<td>Arc Challenge (25-shot)</td>
<td>50.8</td>
<td><b>55.5</b></td>
<td>50.3</td>
<td>54.9</td>
</tr>
<tr>
<td>GPQA (0-shot)</td>
<td>27.5</td>
<td>27.5</td>
<td>28.6</td>
<td><b>31.2</b></td>
</tr>
<tr>
<td>MUSR (0-shot)</td>
<td>35.2</td>
<td><b>43</b></td>
<td>42.1</td>
<td>37.5</td>
</tr>
<tr>
<td>BBH (3-shot)</td>
<td>38.6</td>
<td><b>46.1</b></td>
<td>40.9</td>
<td>44.2</td>
</tr>
<tr>
<td rowspan="4">CommonSense Understanding</td>
<td>PIQA (0-shot)</td>
<td>77.4</td>
<td><b>78.9</b></td>
<td>78.3</td>
<td>75.6</td>
</tr>
<tr>
<td>SciQ (0-shot)</td>
<td>92.7</td>
<td>95.6</td>
<td><b>96.1</b></td>
<td>93.1</td>
</tr>
<tr>
<td>Winogrande (0-shot)</td>
<td><b>69.7</b></td>
<td>68.8</td>
<td>68.4</td>
<td>64.6</td>
</tr>
<tr>
<td>OpenbookQA (0-shot)</td>
<td><b>43.2</b></td>
<td>42.2</td>
<td>43</td>
<td>39.4</td>
</tr>
</tbody>
</table>
## Useful links
- View our [release blogpost](https://huggingface.co/blog/falcon3).
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.
## Technical Report
Coming soon....
## Citation
If the Falcon3 family of models were helpful to your work, feel free to give us a cite.
```
@misc{Falcon3,
title = {The Falcon 3 Family of Open Models},
url = {https://huggingface.co/blog/falcon3},
author = {Falcon-LLM Team},
month = {December},
year = {2024}
}
```