metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results: []
distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1996
- Accuracy: 0.9448
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 318 | 1.2238 | 0.7419 |
1.506 | 2.0 | 636 | 0.6259 | 0.8768 |
1.506 | 3.0 | 954 | 0.3668 | 0.9194 |
0.5727 | 4.0 | 1272 | 0.2670 | 0.9355 |
0.2771 | 5.0 | 1590 | 0.2304 | 0.9394 |
0.2771 | 6.0 | 1908 | 0.2161 | 0.9419 |
0.2005 | 7.0 | 2226 | 0.2077 | 0.9435 |
0.1756 | 8.0 | 2544 | 0.2031 | 0.9445 |
0.1756 | 9.0 | 2862 | 0.1999 | 0.9445 |
0.1662 | 10.0 | 3180 | 0.1996 | 0.9448 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1