timm Backbones
Collection
Pre-trained feature extraction backbones available in timm.
•
18 items
•
Updated
•
7
An EVA02 feature / representation model. Pretrained on ImageNet-22k with masked image modeling (using EVA-CLIP as a MIM teacher) by paper authors.
EVA-02 models are vision transformers with mean pooling, SwiGLU, Rotary Position Embeddings (ROPE), and extra LN in MLP (for Base & Large).
NOTE: timm
checkpoints are float32 for consistency with other models. Original checkpoints are float16 or bfloat16 in some cases, see originals if that's preferred.
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('eva02_base_patch14_224.mim_in22k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'eva02_base_patch14_224.mim_in22k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 257, 768) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Explore the dataset and runtime metrics of this model in timm model results.
model | top1 | top5 | param_count | img_size |
---|---|---|---|---|
eva02_large_patch14_448.mim_m38m_ft_in22k_in1k | 90.054 | 99.042 | 305.08 | 448 |
eva02_large_patch14_448.mim_in22k_ft_in22k_in1k | 89.946 | 99.01 | 305.08 | 448 |
eva_giant_patch14_560.m30m_ft_in22k_in1k | 89.792 | 98.992 | 1014.45 | 560 |
eva02_large_patch14_448.mim_in22k_ft_in1k | 89.626 | 98.954 | 305.08 | 448 |
eva02_large_patch14_448.mim_m38m_ft_in1k | 89.57 | 98.918 | 305.08 | 448 |
eva_giant_patch14_336.m30m_ft_in22k_in1k | 89.56 | 98.956 | 1013.01 | 336 |
eva_giant_patch14_336.clip_ft_in1k | 89.466 | 98.82 | 1013.01 | 336 |
eva_large_patch14_336.in22k_ft_in22k_in1k | 89.214 | 98.854 | 304.53 | 336 |
eva_giant_patch14_224.clip_ft_in1k | 88.882 | 98.678 | 1012.56 | 224 |
eva02_base_patch14_448.mim_in22k_ft_in22k_in1k | 88.692 | 98.722 | 87.12 | 448 |
eva_large_patch14_336.in22k_ft_in1k | 88.652 | 98.722 | 304.53 | 336 |
eva_large_patch14_196.in22k_ft_in22k_in1k | 88.592 | 98.656 | 304.14 | 196 |
eva02_base_patch14_448.mim_in22k_ft_in1k | 88.23 | 98.564 | 87.12 | 448 |
eva_large_patch14_196.in22k_ft_in1k | 87.934 | 98.504 | 304.14 | 196 |
eva02_small_patch14_336.mim_in22k_ft_in1k | 85.74 | 97.614 | 22.13 | 336 |
eva02_tiny_patch14_336.mim_in22k_ft_in1k | 80.658 | 95.524 | 5.76 | 336 |
@article{EVA02,
title={EVA-02: A Visual Representation for Neon Genesis},
author={Fang, Yuxin and Sun, Quan and Wang, Xinggang and Huang, Tiejun and Wang, Xinlong and Cao, Yue},
journal={arXiv preprint arXiv:2303.11331},
year={2023}
}
@article{EVA-CLIP,
title={EVA-02: A Visual Representation for Neon Genesis},
author={Sun, Quan and Fang, Yuxin and Wu, Ledell and Wang, Xinlong and Cao, Yue},
journal={arXiv preprint arXiv:2303.15389},
year={2023}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}