File size: 55,958 Bytes
89dbcf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:50000
- loss:CachedGISTEmbedLoss
base_model: microsoft/mpnet-base
widget:
- source_sentence: what does the accounts receivable turnover measure?
  sentences:
  - The accounts receivable turnover ratio is an accounting measure used to quantify
    a company's effectiveness in collecting its receivables or money owed by clients.
    The ratio shows how well a company uses and manages the credit it extends to customers
    and how quickly that short-term debt is collected or is paid.
  - Capital budgeting, and investment appraisal, is the planning process used to determine
    whether an organization's long term investments such as new machinery, replacement
    of machinery, new plants, new products, and research development projects are
    worth the funding of cash through the firm's capitalization structure ( ...
  - The accounts receivable turnover ratio is an accounting measure used to quantify
    a company's effectiveness in collecting its receivables or money owed by clients.
    The ratio shows how well a company uses and manages the credit it extends to customers
    and how quickly that short-term debt is collected or is paid.
- source_sentence: does gabapentin cause liver problems?
  sentences:
  - Gabapentin has no appreciable liver metabolism, yet, suspected cases of gabapentin-induced
    hepatotoxicity have been reported. Per literature review, two cases of possible
    gabapentin-induced liver injury have been reported.
  - Strongholds are a type of story mission which only unlocks after enough progression
    through the game. There are three Stronghold's during the first section of progression
    through The Division 2. You'll need to complete the first two and have reached
    level 30 before being able to unlock the final Stronghold.
  - The most-common side effects attributed to Gabapentin include mild sedation, ataxia,
    and occasional diarrhea. Sedation can be minimized by tapering from a smaller
    starting dose to the desired dose. When treating seizures, it is ideal to wean
    off the drug to reduce the risk of withdrawal seizures.
- source_sentence: how long should you wait to give blood after eating?
  sentences:
  - Until the bleeding has stopped it is natural to taste blood or to see traces of
    blood in your saliva. You may stop using gauze after the flow stops  usually
    around 8 hours after surgery.
  - Before donation The first and most important rule—never donate blood on an empty
    stomach. “Eat a wholesome meal about 2-3 hours before donating to keep your blood
    sugar stable," says Dr Chaturvedi. The timing of the meal is important too. You
    need to allow the food to be digested properly before the blood is drawn.
  - While grid computing involves virtualizing computing resources to store massive
    amounts of data, whereas cloud computing is where an application doesn't access
    resources directly, rather it accesses them through a service over the internet.
    ...
- source_sentence: what is the difference between chicken francese and chicken marsala?
  sentences:
  - Chicken is the species name, equivalent to our “human.” Rooster is an adult male,
    equivalent to “man.” Hen is an adult female, equivalent to “woman.” Cockerel is
    a juvenile male, equivalent to “boy/young man.”
  - What is 99 kg in pounds? - 99 kg is equal to 218.26 pounds.
  - The difference between the two is for Francese, the chicken breast is first dipped
    in flour, then into a beaten egg mixture, before being cooked. For piccata, the
    chicken is first dipped in egg and then in flour. Both are then simmered in a
    lemony butter sauce, but the piccata sauce includes capers.”
- source_sentence: what energy is released when coal is burned?
  sentences:
  - When coal is burned, it reacts with the oxygen in the air. This chemical reaction
    converts the stored solar energy into thermal energy, which is released as heat.
    But it also produces carbon dioxide and methane.
  - When coal is burned it releases a number of airborne toxins and pollutants. They
    include mercury, lead, sulfur dioxide, nitrogen oxides, particulates, and various
    other heavy metals.
  - Squad Building Challenges allow you to exchange sets of players for coins, packs,
    and special items in FUT 20. Each of these challenges come with specific requirements,
    such as including players from certain teams. ... Live SBCs are time-limited challenges
    which often give out unique, high-rated versions of players.
datasets:
- tomaarsen/gooaq-hard-negatives
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
  emissions: 40.54325678627484
  energy_consumed: 0.10430421450436282
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.301
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: MPNet base trained on Natural Questions pairs
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoClimateFEVER
      type: NanoClimateFEVER
    metrics:
    - type: cosine_accuracy@1
      value: 0.22
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.44
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.52
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.72
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.22
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.16666666666666663
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09399999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.09333333333333332
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.195
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.2333333333333333
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.37233333333333335
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2744024872493329
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3594365079365079
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.20181676147957636
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoDBPedia
      type: NanoDBPedia
    metrics:
    - type: cosine_accuracy@1
      value: 0.46
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.62
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.76
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.82
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.46
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.38666666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.38799999999999996
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.344
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.03065300183409328
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.07730098142643593
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.14588470319900892
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.22159653924772912
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3920743245484332
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.567
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.28153419189397744
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoFEVER
      type: NanoFEVER
    metrics:
    - type: cosine_accuracy@1
      value: 0.38
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.54
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.58
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.68
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.38
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.37
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.52
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.57
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.66
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5156585003907987
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4756666666666666
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.47620972127897226
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoFiQA2018
      type: NanoFiQA2018
    metrics:
    - type: cosine_accuracy@1
      value: 0.28
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.52
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.58
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.28
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.22
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16399999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09799999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1371904761904762
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.3226904761904762
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3682142857142857
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.43073809523809525
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3420135901424927
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.38405555555555554
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2826394452885763
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoHotpotQA
      type: NanoHotpotQA
    metrics:
    - type: cosine_accuracy@1
      value: 0.34
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.52
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.62
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.72
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.34
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.19333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14400000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09200000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.17
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.29
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.36
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.46
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.3723049657456267
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4570793650793651
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2995175868330484
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: cosine_accuracy@1
      value: 0.1
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.28
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.52
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.68
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.09333333333333332
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.10400000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.068
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.28
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.52
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.68
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.36083481845261806
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.26157142857142857
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.27215692684924997
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: cosine_accuracy@1
      value: 0.26
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.38
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.44
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.26
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.21333333333333332
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19599999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.13799999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.01122167476431692
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.02047531859468654
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.03079316493603994
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.0422192068561938
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.1654539374427929
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3367460317460317
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.04901233559063261
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: cosine_accuracy@1
      value: 0.14
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.36
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.44
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.58
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.14
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.11999999999999998
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.08800000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06000000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.13
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.34
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.41
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.55
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.33223439819785083
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.2734365079365079
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2764557370904448
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoQuoraRetrieval
      type: NanoQuoraRetrieval
    metrics:
    - type: cosine_accuracy@1
      value: 0.82
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.92
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.96
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.82
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3666666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.244
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.13399999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7206666666666667
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8553333333333333
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8993333333333333
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9566666666666666
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8807317086981499
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8616666666666666
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8525831566094724
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoSCIDOCS
      type: NanoSCIDOCS
    metrics:
    - type: cosine_accuracy@1
      value: 0.34
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.48
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.54
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.66
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.34
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24666666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.212
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.14800000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.07066666666666668
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.15366666666666667
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.21866666666666668
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.30466666666666664
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.28968259227673265
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4286349206349206
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.22985309744949503
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoArguAna
      type: NanoArguAna
    metrics:
    - type: cosine_accuracy@1
      value: 0.18
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.56
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.62
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.84
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.18
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18666666666666668
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.124
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08399999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.18
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.56
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.62
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.84
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.49726259302609505
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.389079365079365
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3967117258845785
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoSciFact
      type: NanoSciFact
    metrics:
    - type: cosine_accuracy@1
      value: 0.38
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.46
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.48
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.62
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.38
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.16666666666666663
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.10400000000000001
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.068
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.345
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.44
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.46
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.605
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.47012843706683605
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4409285714285714
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.43840522432574647
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: NanoTouche2020
      type: NanoTouche2020
    metrics:
    - type: cosine_accuracy@1
      value: 0.5306122448979592
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7551020408163265
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8571428571428571
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9387755102040817
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5306122448979592
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.45578231292517
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.4040816326530612
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.336734693877551
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.03881638827876476
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.10008002766114979
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.13975964122053652
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.22966349775526734
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.39339080810676896
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6553206997084549
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.31344772891929434
      name: Cosine Map@100
  - task:
      type: nano-beir
      name: Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: cosine_accuracy@1
      value: 0.3408163265306122
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5227001569858712
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6013186813186814
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7152904238618524
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3408163265306122
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.23044479330193612
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1855447409733124
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.13344113029827318
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.18442678521033212
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.31958052337482684
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3827680868002465
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4886833850587655
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4066287047188099
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4531247913084647
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.33618027996100497
      name: Cosine Map@100
---


# MPNet base trained on Natural Questions pairs

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("tomaarsen/mpnet-base-nq-cgist-triplet-neg-gte")

# Run inference

sentences = [

    'what energy is released when coal is burned?',

    'When coal is burned, it reacts with the oxygen in the air. This chemical reaction converts the stored solar energy into thermal energy, which is released as heat. But it also produces carbon dioxide and methane.',

    'When coal is burned it releases a number of airborne toxins and pollutants. They include mercury, lead, sulfur dioxide, nitrogen oxides, particulates, and various other heavy metals.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | NanoClimateFEVER | NanoDBPedia | NanoFEVER  | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ     | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
| cosine_accuracy@1   | 0.22             | 0.46        | 0.38       | 0.28         | 0.34         | 0.1         | 0.26         | 0.14       | 0.82               | 0.34        | 0.18        | 0.38        | 0.5306         |

| cosine_accuracy@3   | 0.44             | 0.62        | 0.54       | 0.5          | 0.52         | 0.28        | 0.38         | 0.36       | 0.9                | 0.48        | 0.56        | 0.46        | 0.7551         |
| cosine_accuracy@5   | 0.52             | 0.76        | 0.58       | 0.52         | 0.62         | 0.52        | 0.44         | 0.44       | 0.92               | 0.54        | 0.62        | 0.48        | 0.8571         |

| cosine_accuracy@10  | 0.72             | 0.82        | 0.68       | 0.58         | 0.72         | 0.68        | 0.5          | 0.58       | 0.96               | 0.66        | 0.84        | 0.62        | 0.9388         |
| cosine_precision@1  | 0.22             | 0.46        | 0.38       | 0.28         | 0.34         | 0.1         | 0.26         | 0.14       | 0.82               | 0.34        | 0.18        | 0.38        | 0.5306         |

| cosine_precision@3  | 0.1667           | 0.3867      | 0.18       | 0.22         | 0.1933       | 0.0933      | 0.2133       | 0.12       | 0.3667             | 0.2467      | 0.1867      | 0.1667      | 0.4558         |
| cosine_precision@5  | 0.12             | 0.388       | 0.12       | 0.164        | 0.144        | 0.104       | 0.196        | 0.088      | 0.244              | 0.212       | 0.124       | 0.104       | 0.4041         |

| cosine_precision@10 | 0.094            | 0.344       | 0.07       | 0.098        | 0.092        | 0.068       | 0.138        | 0.06       | 0.134              | 0.148       | 0.084       | 0.068       | 0.3367         |
| cosine_recall@1     | 0.0933           | 0.0307      | 0.37       | 0.1372       | 0.17         | 0.1         | 0.0112       | 0.13       | 0.7207             | 0.0707      | 0.18        | 0.345       | 0.0388         |

| cosine_recall@3     | 0.195            | 0.0773      | 0.52       | 0.3227       | 0.29         | 0.28        | 0.0205       | 0.34       | 0.8553             | 0.1537      | 0.56        | 0.44        | 0.1001         |
| cosine_recall@5     | 0.2333           | 0.1459      | 0.57       | 0.3682       | 0.36         | 0.52        | 0.0308       | 0.41       | 0.8993             | 0.2187      | 0.62        | 0.46        | 0.1398         |

| cosine_recall@10    | 0.3723           | 0.2216      | 0.66       | 0.4307       | 0.46         | 0.68        | 0.0422       | 0.55       | 0.9567             | 0.3047      | 0.84        | 0.605       | 0.2297         |
| **cosine_ndcg@10**  | **0.2744**       | **0.3921**  | **0.5157** | **0.342**    | **0.3723**   | **0.3608**  | **0.1655**   | **0.3322** | **0.8807**         | **0.2897**  | **0.4973**  | **0.4701**  | **0.3934**     |

| cosine_mrr@10       | 0.3594           | 0.567       | 0.4757     | 0.3841       | 0.4571       | 0.2616      | 0.3367       | 0.2734     | 0.8617             | 0.4286      | 0.3891      | 0.4409      | 0.6553         |

| cosine_map@100      | 0.2018           | 0.2815      | 0.4762     | 0.2826       | 0.2995       | 0.2722      | 0.049        | 0.2765     | 0.8526             | 0.2299      | 0.3967      | 0.4384      | 0.3134         |



#### Nano BEIR



* Dataset: `NanoBEIR_mean`

* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| cosine_accuracy@1   | 0.3408     |

| cosine_accuracy@3   | 0.5227     |

| cosine_accuracy@5   | 0.6013     |

| cosine_accuracy@10  | 0.7153     |

| cosine_precision@1  | 0.3408     |

| cosine_precision@3  | 0.2304     |

| cosine_precision@5  | 0.1855     |

| cosine_precision@10 | 0.1334     |

| cosine_recall@1     | 0.1844     |

| cosine_recall@3     | 0.3196     |

| cosine_recall@5     | 0.3828     |

| cosine_recall@10    | 0.4887     |

| **cosine_ndcg@10**  | **0.4066** |

| cosine_mrr@10       | 0.4531     |
| cosine_map@100      | 0.3362     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### gooaq-hard-negatives



* Dataset: [gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives) at [87594a1](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives/tree/87594a1e6c58e88b5843afa9da3a97ffd75d01c2)

* Size: 50,000 training samples

* Columns: <code>question</code>, <code>answer</code>, and <code>negative</code>

* Approximate statistics based on the first 1000 samples:

  |         | question                                                                          | answer                                                                              | negative                                                                            |

  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                              | string                                                                              |

  | details | <ul><li>min: 8 tokens</li><li>mean: 11.53 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 59.79 tokens</li><li>max: 150 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 58.76 tokens</li><li>max: 143 tokens</li></ul> |

* Samples:

  | question                                                                              | answer                                                                                                                                                                                                                                                                                                                                      | negative                                                                                                                                                                                                                                                                                                                             |

  |:--------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>what is the difference between calories from fat and total fat?</code>          | <code>Fat has more than twice as many calories per gram as carbohydrates and proteins. A gram of fat has about 9 calories, while a gram of carbohydrate or protein has about 4 calories. In other words, you could eat twice as much carbohydrates or proteins as fat for the same amount of calories.</code>                               | <code>Fat has more than twice as many calories per gram as carbohydrates and proteins. A gram of fat has about 9 calories, while a gram of carbohydrate or protein has about 4 calories. In other words, you could eat twice as much carbohydrates or proteins as fat for the same amount of calories.</code>                        |

  | <code>what is the difference between return transcript and account transcript?</code> | <code>A tax return transcript usually meets the needs of lending institutions offering mortgages and student loans. ... Tax Account Transcript - shows basic data such as return type, marital status, adjusted gross income, taxable income and all payment types. It also shows changes made after you filed your original return.</code> | <code>Trial balance is not a financial statement whereas a balance sheet is a financial statement. Trial balance is solely used for internal purposes whereas a balance sheet is used for purposes other than internal i.e. external. In a trial balance, each and every account is divided into debit (dr.) and credit (cr.)</code> |

  | <code>how long does my dog need to fast before sedation?</code>                       | <code>Now, guidelines are aimed towards 6-8 hours before surgery. This pre-op fasting time is much more beneficial for your pets because you have enough food in there to neutralize the stomach acid, preventing it from coming up the esophagus that causes regurgitation under anesthetic.</code>                                        | <code>Try not to let your pooch rapidly wolf down his/her food! Do not let the dog play or exercise (e.g. go for a walk) for at least two hours after having a meal. Ensure continuous fresh water is available to avoid your pet gulping down a large amount after eating.</code>                                                   |

* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:

  ```json

  {'guide': SentenceTransformer(

    (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 

    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

    (2): Normalize()

  ), 'temperature': 0.01}

  ```



### Evaluation Dataset



#### gooaq-hard-negatives



* Dataset: [gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives) at [87594a1](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives/tree/87594a1e6c58e88b5843afa9da3a97ffd75d01c2)

* Size: 10,048,700 evaluation samples

* Columns: <code>question</code>, <code>answer</code>, and <code>negative</code>

* Approximate statistics based on the first 1000 samples:

  |         | question                                                                          | answer                                                                              | negative                                                                            |

  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                              | string                                                                              |

  | details | <ul><li>min: 8 tokens</li><li>mean: 11.61 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 58.16 tokens</li><li>max: 131 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 57.98 tokens</li><li>max: 157 tokens</li></ul> |

* Samples:

  | question                                                            | answer                                                                                                                                                                                                                                                                            | negative                                                                                                                                                                                                                                                                                                                                    |

  |:--------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>how is height width and length written?</code>                | <code>The Graphics' industry standard is width by height (width x height). Meaning that when you write your measurements, you write them from your point of view, beginning with the width.</code>                                                                                | <code>The Graphics' industry standard is width by height (width x height). Meaning that when you write your measurements, you write them from your point of view, beginning with the width. That's important.</code>                                                                                                                        |

  | <code>what is the difference between pork shoulder and loin?</code> | <code>All the recipes I've found for pulled pork recommends a shoulder/butt. Shoulders take longer to cook than a loin, because they're tougher. Loins are lean, while shoulders have marbled fat inside.</code>                                                                  | <code>They are extracted from the loin, which runs from the hip to the shoulder, and it has a small strip of meat called the tenderloin. Unlike other pork, this pork chop is cut from four major sections, which are the shoulder, also known as the blade chops, ribs chops, loin chops, and the last, which is the sirloin chops.</code> |

  | <code>is the yin yang symbol religious?</code>                      | <code>The ubiquitous yin-yang symbol holds its roots in Taoism/Daoism, a Chinese religion and philosophy. The yin, the dark swirl, is associated with shadows, femininity, and the trough of a wave; the yang, the light swirl, represents brightness, passion and growth.</code> | <code>Yin energy is in the calm colors around you, in the soft music, in the soothing sound of a water fountain, or the relaxing images of water. Yang (active energy) is the feng shui energy expressed in strong, vibrant sounds and colors, bright lights, upward moving energy, tall plants, etc.</code>                                |

* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:

  ```json

  {'guide': SentenceTransformer(

    (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 

    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

    (2): Normalize()

  ), 'temperature': 0.01}

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2048
- `per_device_eval_batch_size`: 2048
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |

|:-----:|:----:|:-------------:|:---------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:|

| 0.04  | 1    | 11.5141       | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.2   | 5    | 9.4407        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.4   | 10   | 5.6005        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.6   | 15   | 3.7323        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 0.8   | 20   | 2.7976        | -               | -                               | -                          | -                        | -                           | -                           | -                          | -                           | -                     | -                                 | -                          | -                          | -                          | -                             | -                            |

| 1.0   | 25   | 2.1899        | 1.3429          | 0.2744                          | 0.3921                     | 0.5157                   | 0.3420                      | 0.3723                      | 0.3608                     | 0.1655                      | 0.3322                | 0.8807                            | 0.2897                     | 0.4973                     | 0.4701                     | 0.3934                        | 0.4066                       |





### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.104 kWh

- **Carbon Emitted**: 0.041 kg of CO2

- **Hours Used**: 0.301 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 3.4.0.dev0

- Transformers: 4.46.2

- PyTorch: 2.5.0+cu121

- Accelerate: 0.35.0.dev0

- Datasets: 2.20.0

- Tokenizers: 0.20.3



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->