Static Embeddings with BERT uncased tokenizer finetuned on GooAQ pairs
This is a sentence-transformers model trained on the gooaq dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
This model was trained using the train_script.py code.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: inf tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): StaticEmbedding(
(embedding): EmbeddingBag(30522, 1024, mode='mean')
)
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("tomaarsen/static-bert-uncased-gooaq")
sentences = [
"how to reverse a video on tiktok that's not yours?",
'[\'Tap "Effects" at the bottom of your screen — it\\\'s an icon that looks like a clock. Open the Effects menu. ... \', \'At the end of the new list that appears, tap "Time." Select "Time" at the end. ... \', \'Select "Reverse" — you\\\'ll then see a preview of your new, reversed video appear on the screen.\']',
'Relative age is the age of a rock layer (or the fossils it contains) compared to other layers. It can be determined by looking at the position of rock layers. Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can be determined by using radiometric dating.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6309 |
cosine_accuracy@3 |
0.8409 |
cosine_accuracy@5 |
0.8986 |
cosine_accuracy@10 |
0.9444 |
cosine_precision@1 |
0.6309 |
cosine_precision@3 |
0.2803 |
cosine_precision@5 |
0.1797 |
cosine_precision@10 |
0.0944 |
cosine_recall@1 |
0.6309 |
cosine_recall@3 |
0.8409 |
cosine_recall@5 |
0.8986 |
cosine_recall@10 |
0.9444 |
cosine_ndcg@10 |
0.7933 |
cosine_mrr@10 |
0.744 |
cosine_map@100 |
0.7466 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6271 |
cosine_accuracy@3 |
0.8366 |
cosine_accuracy@5 |
0.8946 |
cosine_accuracy@10 |
0.9431 |
cosine_precision@1 |
0.6271 |
cosine_precision@3 |
0.2789 |
cosine_precision@5 |
0.1789 |
cosine_precision@10 |
0.0943 |
cosine_recall@1 |
0.6271 |
cosine_recall@3 |
0.8366 |
cosine_recall@5 |
0.8946 |
cosine_recall@10 |
0.9431 |
cosine_ndcg@10 |
0.7905 |
cosine_mrr@10 |
0.7408 |
cosine_map@100 |
0.7434 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6192 |
cosine_accuracy@3 |
0.8235 |
cosine_accuracy@5 |
0.8866 |
cosine_accuracy@10 |
0.9364 |
cosine_precision@1 |
0.6192 |
cosine_precision@3 |
0.2745 |
cosine_precision@5 |
0.1773 |
cosine_precision@10 |
0.0936 |
cosine_recall@1 |
0.6192 |
cosine_recall@3 |
0.8235 |
cosine_recall@5 |
0.8866 |
cosine_recall@10 |
0.9364 |
cosine_ndcg@10 |
0.7821 |
cosine_mrr@10 |
0.7321 |
cosine_map@100 |
0.7349 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.5942 |
cosine_accuracy@3 |
0.804 |
cosine_accuracy@5 |
0.8721 |
cosine_accuracy@10 |
0.9249 |
cosine_precision@1 |
0.5942 |
cosine_precision@3 |
0.268 |
cosine_precision@5 |
0.1744 |
cosine_precision@10 |
0.0925 |
cosine_recall@1 |
0.5942 |
cosine_recall@3 |
0.804 |
cosine_recall@5 |
0.8721 |
cosine_recall@10 |
0.9249 |
cosine_ndcg@10 |
0.7628 |
cosine_mrr@10 |
0.7103 |
cosine_map@100 |
0.7134 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.556 |
cosine_accuracy@3 |
0.7553 |
cosine_accuracy@5 |
0.8267 |
cosine_accuracy@10 |
0.8945 |
cosine_precision@1 |
0.556 |
cosine_precision@3 |
0.2518 |
cosine_precision@5 |
0.1653 |
cosine_precision@10 |
0.0895 |
cosine_recall@1 |
0.556 |
cosine_recall@3 |
0.7553 |
cosine_recall@5 |
0.8267 |
cosine_recall@10 |
0.8945 |
cosine_ndcg@10 |
0.7246 |
cosine_mrr@10 |
0.6702 |
cosine_map@100 |
0.6743 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4628 |
cosine_accuracy@3 |
0.6619 |
cosine_accuracy@5 |
0.7415 |
cosine_accuracy@10 |
0.8241 |
cosine_precision@1 |
0.4628 |
cosine_precision@3 |
0.2206 |
cosine_precision@5 |
0.1483 |
cosine_precision@10 |
0.0824 |
cosine_recall@1 |
0.4628 |
cosine_recall@3 |
0.6619 |
cosine_recall@5 |
0.7415 |
cosine_recall@10 |
0.8241 |
cosine_ndcg@10 |
0.6387 |
cosine_mrr@10 |
0.5798 |
cosine_map@100 |
0.5857 |
Training Details
Training Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 3,012,496 training samples
- Columns:
question
and answer
- Approximate statistics based on the first 1000 samples:
|
question |
answer |
type |
string |
string |
details |
- min: 18 characters
- mean: 43.23 characters
- max: 96 characters
|
- min: 55 characters
- mean: 253.36 characters
- max: 371 characters
|
- Samples:
question |
answer |
what is the difference between broilers and layers? |
An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well. |
what is the difference between chronological order and spatial order? |
As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time. |
is kamagra same as viagra? |
Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 3,012,496 evaluation samples
- Columns:
question
and answer
- Approximate statistics based on the first 1000 samples:
|
question |
answer |
type |
string |
string |
details |
- min: 18 characters
- mean: 43.17 characters
- max: 98 characters
|
- min: 51 characters
- mean: 254.12 characters
- max: 360 characters
|
- Samples:
question |
answer |
how do i program my directv remote with my tv? |
['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.'] |
are rodrigues fruit bats nocturnal? |
Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night. |
why does your heart rate increase during exercise bbc bitesize? |
During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
512,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 2048
per_device_eval_batch_size
: 2048
learning_rate
: 0.2
num_train_epochs
: 1
warmup_ratio
: 0.1
bf16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 2048
per_device_eval_batch_size
: 2048
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 0.2
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
eval_use_gather_object
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
Validation Loss |
gooaq-1024-dev_cosine_map@100 |
gooaq-512-dev_cosine_map@100 |
gooaq-256-dev_cosine_map@100 |
gooaq-128-dev_cosine_map@100 |
gooaq-64-dev_cosine_map@100 |
gooaq-32-dev_cosine_map@100 |
0 |
0 |
- |
- |
0.2095 |
0.2010 |
0.1735 |
0.1381 |
0.0750 |
0.0331 |
0.0007 |
1 |
34.953 |
- |
- |
- |
- |
- |
- |
- |
0.0682 |
100 |
16.2504 |
- |
- |
- |
- |
- |
- |
- |
0.1363 |
200 |
5.9502 |
- |
- |
- |
- |
- |
- |
- |
0.1704 |
250 |
- |
1.6781 |
0.6791 |
0.6729 |
0.6619 |
0.6409 |
0.5904 |
0.4934 |
0.2045 |
300 |
4.8411 |
- |
- |
- |
- |
- |
- |
- |
0.2727 |
400 |
4.336 |
- |
- |
- |
- |
- |
- |
- |
0.3408 |
500 |
4.0484 |
1.3935 |
0.7104 |
0.7055 |
0.6968 |
0.6756 |
0.6322 |
0.5358 |
0.4090 |
600 |
3.8378 |
- |
- |
- |
- |
- |
- |
- |
0.4772 |
700 |
3.6765 |
- |
- |
- |
- |
- |
- |
- |
0.5112 |
750 |
- |
1.2549 |
0.7246 |
0.7216 |
0.7133 |
0.6943 |
0.6482 |
0.5582 |
0.5453 |
800 |
3.5439 |
- |
- |
- |
- |
- |
- |
- |
0.6135 |
900 |
3.4284 |
- |
- |
- |
- |
- |
- |
- |
0.6817 |
1000 |
3.3576 |
1.1656 |
0.7359 |
0.7338 |
0.7252 |
0.7040 |
0.6604 |
0.5715 |
0.7498 |
1100 |
3.2456 |
- |
- |
- |
- |
- |
- |
- |
0.8180 |
1200 |
3.2014 |
- |
- |
- |
- |
- |
- |
- |
0.8521 |
1250 |
- |
1.1133 |
0.7438 |
0.7398 |
0.7310 |
0.7099 |
0.6704 |
0.5796 |
0.8862 |
1300 |
3.1536 |
- |
- |
- |
- |
- |
- |
- |
0.9543 |
1400 |
3.0696 |
- |
- |
- |
- |
- |
- |
- |
1.0 |
1467 |
- |
- |
0.7466 |
0.7434 |
0.7349 |
0.7134 |
0.6743 |
0.5857 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.017 kWh
- Carbon Emitted: 0.006 kg of CO2
- Hours Used: 0.109 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.2.0.dev0
- Transformers: 4.43.4
- PyTorch: 2.5.0.dev20240807+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}