File size: 41,356 Bytes
ed25478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
---

language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MultipleNegativesRankingLoss
- loss:ContrastiveLoss
base_model: sentence-transformers/stsb-distilbert-base
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
- average_precision
- f1
- precision
- recall
- threshold
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
widget:
- source_sentence: What is Mindset?
  sentences:
  - What is a mindset?
  - Can you eat only once a day?
  - Is law a good career choice?
- source_sentence: Is a queef real?
  sentences:
  - Is "G" based on real events?
  - What is the entire court process?
  - How do I reduce my weight?
- source_sentence: Is Cicret a scam?
  sentences:
  - Is the Cicret Bracelet a scam?
  - Was World War II Inevitable?
  - What are some of the best photos?
- source_sentence: What is Planet X?
  sentences:
  - Do planet X exist?
  - What are the best C++ books?
  - How can I lose my weight fast?
- source_sentence: How fast is fast?
  sentences:
  - How does light travel so fast?
  - How do I copyright my books?
  - What is a black hole made of?
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 32.724475965905576
  energy_consumed: 0.08418911136527617
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.399
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
  results:
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: quora duplicates
      type: quora-duplicates
    metrics:
    - type: cosine_accuracy
      value: 0.846
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.7969297170639038
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.7791495198902607
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.7139598727226257
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.6977886977886978
      name: Cosine Precision
    - type: cosine_recall
      value: 0.8819875776397516
      name: Cosine Recall
    - type: cosine_ap
      value: 0.8230449963294564
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.843
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 151.2908477783203
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.7660818713450294
      name: Dot F1
    - type: dot_f1_threshold
      value: 143.77838134765625
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.7237569060773481
      name: Dot Precision
    - type: dot_recall
      value: 0.8136645962732919
      name: Dot Recall
    - type: dot_ap
      value: 0.7946044629726107
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.838
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 194.99119567871094
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.7704081632653061
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 247.49777221679688
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.6536796536796536
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.937888198757764
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.8149715271935773
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.841
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 9.02225112915039
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.7703889585947302
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 11.385245323181152
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.6463157894736842
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.953416149068323
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.8152967320117391
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.846
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 194.99119567871094
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.7791495198902607
      name: Max F1
    - type: max_f1_threshold
      value: 247.49777221679688
      name: Max F1 Threshold
    - type: max_precision
      value: 0.7237569060773481
      name: Max Precision
    - type: max_recall
      value: 0.953416149068323
      name: Max Recall
    - type: max_ap
      value: 0.8230449963294564
      name: Max Ap
  - task:
      type: paraphrase-mining
      name: Paraphrase Mining
    dataset:
      name: quora duplicates dev
      type: quora-duplicates-dev
    metrics:
    - type: average_precision
      value: 0.5888649029434471
      name: Average Precision
    - type: f1
      value: 0.5761652140962487
      name: F1
    - type: precision
      value: 0.5477552123204396
      name: Precision
    - type: recall
      value: 0.6076834690513064
      name: Recall
    - type: threshold
      value: 0.7728720009326935
      name: Threshold
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.963
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9906
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9944
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9982
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.963
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.4285333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.27568000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.14494
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8299562338609103
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9590366552956846
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9806221849555673
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9925738410935468
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9784033087450696
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9771579365079368
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9709189650394419
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.9514
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.9852
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.991
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9968
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.9514
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.4247333333333334
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.27364
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.14458000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.8194380520427287
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.9520212390452685
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.9755502441186265
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.9910547306614953
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.9715023430522326
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.9692583333333334
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.961739772177385
      name: Dot Map@100
---


# SentenceTransformer based on sentence-transformers/stsb-distilbert-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) on the [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) and [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) <!-- at revision 82ad392c08f81be9be9bf065339670b23f2e1493 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
    - [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("tomaarsen/stsb-distilbert-base-mnrl-cl-multi")

# Run inference

sentences = [

    'How fast is fast?',

    'How does light travel so fast?',

    'How do I copyright my books?',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Binary Classification
* Dataset: `quora-duplicates`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value     |
|:-----------------------------|:----------|
| cosine_accuracy              | 0.846     |

| cosine_accuracy_threshold    | 0.7969    |

| cosine_f1                    | 0.7791    |
| cosine_f1_threshold          | 0.714     |
| cosine_precision             | 0.6978    |

| cosine_recall                | 0.882     |
| cosine_ap                    | 0.823     |

| dot_accuracy                 | 0.843     |
| dot_accuracy_threshold       | 151.2908  |
| dot_f1                       | 0.7661    |

| dot_f1_threshold             | 143.7784  |

| dot_precision                | 0.7238    |
| dot_recall                   | 0.8137    |

| dot_ap                       | 0.7946    |
| manhattan_accuracy           | 0.838     |

| manhattan_accuracy_threshold | 194.9912  |

| manhattan_f1                 | 0.7704    |
| manhattan_f1_threshold       | 247.4978  |
| manhattan_precision          | 0.6537    |

| manhattan_recall             | 0.9379    |
| manhattan_ap                 | 0.815     |

| euclidean_accuracy           | 0.841     |
| euclidean_accuracy_threshold | 9.0223    |
| euclidean_f1                 | 0.7704    |

| euclidean_f1_threshold       | 11.3852   |

| euclidean_precision          | 0.6463    |
| euclidean_recall             | 0.9534    |

| euclidean_ap                 | 0.8153    |
| max_accuracy                 | 0.846     |

| max_accuracy_threshold       | 194.9912  |

| max_f1                       | 0.7791    |
| max_f1_threshold             | 247.4978  |
| max_precision                | 0.7238    |

| max_recall                   | 0.9534    |
| **max_ap**                   | **0.823** |



#### Paraphrase Mining

* Dataset: `quora-duplicates-dev`

* Evaluated with [<code>ParaphraseMiningEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.ParaphraseMiningEvaluator)



| Metric                | Value      |

|:----------------------|:-----------|

| **average_precision** | **0.5889** |
| f1                    | 0.5762     |
| precision             | 0.5478     |
| recall                | 0.6077     |
| threshold             | 0.7729     |

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.963      |

| cosine_accuracy@3   | 0.9906     |
| cosine_accuracy@5   | 0.9944     |

| cosine_accuracy@10  | 0.9982     |
| cosine_precision@1  | 0.963      |

| cosine_precision@3  | 0.4285     |
| cosine_precision@5  | 0.2757     |

| cosine_precision@10 | 0.1449     |
| cosine_recall@1     | 0.83       |

| cosine_recall@3     | 0.959      |
| cosine_recall@5     | 0.9806     |

| cosine_recall@10    | 0.9926     |
| cosine_ndcg@10      | 0.9784     |

| cosine_mrr@10       | 0.9772     |
| **cosine_map@100**  | **0.9709** |

| dot_accuracy@1      | 0.9514     |

| dot_accuracy@3      | 0.9852     |

| dot_accuracy@5      | 0.991      |

| dot_accuracy@10     | 0.9968     |

| dot_precision@1     | 0.9514     |

| dot_precision@3     | 0.4247     |

| dot_precision@5     | 0.2736     |

| dot_precision@10    | 0.1446     |

| dot_recall@1        | 0.8194     |

| dot_recall@3        | 0.952      |

| dot_recall@5        | 0.9756     |

| dot_recall@10       | 0.9911     |

| dot_ndcg@10         | 0.9715     |

| dot_mrr@10          | 0.9693     |

| dot_map@100         | 0.9617     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Datasets



#### mnrl



* Dataset: [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)

* Size: 100,000 training samples

* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>

* Approximate statistics based on the first 1000 samples:

  |         | anchor                                                                            | positive                                                                          | negative                                                                          |

  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                            | string                                                                            |

  | details | <ul><li>min: 6 tokens</li><li>mean: 13.85 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.65 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.76 tokens</li><li>max: 64 tokens</li></ul> |

* Samples:

  | anchor                                                                          | positive                                                                                       | negative                                                                                                         |

  |:--------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------|

  | <code>Why in India do we not have one on one political debate as in USA?</code> | <code>Why cant we have a public debate between politicians in India like the one in US?</code> | <code>Can people on Quora stop India Pakistan debate? We are sick and tired seeing this everyday in bulk?</code> |

  | <code>What is OnePlus One?</code>                                               | <code>How is oneplus one?</code>                                                               | <code>Why is OnePlus One so good?</code>                                                                         |

  | <code>Does our mind control our emotions?</code>                                | <code>How do smart and successful people control their emotions?</code>                        | <code>How can I control my positive emotions for the people whom I love but they don't care about me?</code>     |

* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```



#### cl



* Dataset: [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)

* Size: 100,000 training samples

* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | sentence1                                                                        | sentence2                                                                         | label                                           |

  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|

  | type    | string                                                                           | string                                                                            | int                                             |

  | details | <ul><li>min: 6 tokens</li><li>mean: 15.3 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.66 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>0: ~62.00%</li><li>1: ~38.00%</li></ul> |

* Samples:

  | sentence1                                                                              | sentence2                                                                                             | label          |

  |:---------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|:---------------|

  | <code>What is the step by step guide to invest in share market in india?</code>        | <code>What is the step by step guide to invest in share market?</code>                                | <code>0</code> |

  | <code>What is the story of Kohinoor (Koh-i-Noor) Diamond?</code>                       | <code>What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?</code> | <code>0</code> |

  | <code>How can I increase the speed of my internet connection while using a VPN?</code> | <code>How can Internet speed be increased by hacking through DNS?</code>                              | <code>0</code> |

* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/losses.html#contrastiveloss) with these parameters:

  ```json

  {

      "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",

      "margin": 0.5,

      "size_average": true

  }

  ```



### Evaluation Datasets



#### mnrl



* Dataset: [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)

* Size: 1,000 evaluation samples

* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>

* Approximate statistics based on the first 1000 samples:

  |         | anchor                                                                            | positive                                                                         | negative                                                                          |

  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                           | string                                                                            |

  | details | <ul><li>min: 7 tokens</li><li>mean: 13.84 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.8 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.71 tokens</li><li>max: 56 tokens</li></ul> |

* Samples:

  | anchor                                                                                                   | positive                                                                         | negative                                                                                                                                                                                                                                                                          |

  |:---------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>Which programming language is best for developing low-end games?</code>                            | <code>What coding language should I learn first for making games?</code>         | <code>I am entering the world of video game programming and want to know what language I should learn? Because there are so many languages ​​I do not know which one to start with. Can you recommend a language that's easy to learn and can be used with many platforms?</code> |

  | <code>Was it appropriate for Meryl Streep to use her Golden Globes speech to attack Donald Trump?</code> | <code>Should Meryl Streep be using her position to attack the president?</code>  | <code>Why did Kelly Ann Conway say that Meryl Streep incited peoples worst feelings?</code>                                                                                                                                                                                       |

  | <code>Where can I found excellent commercial fridges in Sydney?</code>                                   | <code>Where can I found impressive range of commercial fridges in Sydney?</code> | <code>What is the best grocery delivery service in Sydney?</code>                                                                                                                                                                                                                 |

* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```



#### cl



* Dataset: [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)

* Size: 1,000 evaluation samples

* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | sentence1                                                                         | sentence2                                                                         | label                                           |

  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|

  | type    | string                                                                            | string                                                                            | int                                             |

  | details | <ul><li>min: 5 tokens</li><li>mean: 15.59 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.65 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>0: ~63.40%</li><li>1: ~36.60%</li></ul> |

* Samples:

  | sentence1                                                                 | sentence2                                                                                                | label          |

  |:--------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|:---------------|

  | <code>What should I ask my friend to get from UK to India?</code>         | <code>What is the process of getting a surgical residency in UK after completing MBBS from India?</code> | <code>0</code> |

  | <code>How can I learn hacking for free?</code>                            | <code>How can I learn to hack seriously?</code>                                                          | <code>1</code> |

  | <code>Which is the best website to learn programming language C++?</code> | <code>Which is the best website to learn C++ Programming language for free?</code>                       | <code>0</code> |

* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/losses.html#contrastiveloss) with these parameters:

  ```json

  {

      "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",

      "margin": 0.5,

      "size_average": true

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 64

- `per_device_eval_batch_size`: 64

- `num_train_epochs`: 1

- `warmup_ratio`: 0.1

- `fp16`: True

- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: False

- `per_device_train_batch_size`: 64

- `per_device_eval_batch_size`: 64

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `learning_rate`: 5e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1.0

- `num_train_epochs`: 1

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.1

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: False

- `fp16`: True

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: False

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: None

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `dispatch_batches`: None

- `split_batches`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional



</details>



### Training Logs

| Epoch  | Step | Training Loss | cl loss | mnrl loss | cosine_map@100 | quora-duplicates-dev_average_precision | quora-duplicates_max_ap |

|:------:|:----:|:-------------:|:-------:|:---------:|:--------------:|:--------------------------------------:|:-----------------------:|

| 0      | 0    | -             | -       | -         | 0.9245         | 0.4200                                 | 0.6890                  |

| 0.0320 | 100  | 0.1634        | -       | -         | -              | -                                      | -                       |

| 0.0640 | 200  | 0.1206        | -       | -         | -              | -                                      | -                       |

| 0.0800 | 250  | -             | 0.0190  | 0.1469    | 0.9530         | 0.5068                                 | 0.7354                  |

| 0.0960 | 300  | 0.1036        | -       | -         | -              | -                                      | -                       |

| 0.1280 | 400  | 0.0836        | -       | -         | -              | -                                      | -                       |

| 0.1599 | 500  | 0.0918        | 0.0180  | 0.1008    | 0.9553         | 0.5259                                 | 0.7643                  |

| 0.1919 | 600  | 0.0784        | -       | -         | -              | -                                      | -                       |

| 0.2239 | 700  | 0.0656        | -       | -         | -              | -                                      | -                       |

| 0.2399 | 750  | -             | 0.0177  | 0.0905    | 0.9593         | 0.5305                                 | 0.7686                  |

| 0.2559 | 800  | 0.0593        | -       | -         | -              | -                                      | -                       |

| 0.2879 | 900  | 0.0534        | -       | -         | -              | -                                      | -                       |

| 0.3199 | 1000 | 0.0612        | 0.0161  | 0.0736    | 0.9642         | 0.5512                                 | 0.7881                  |

| 0.3519 | 1100 | 0.0572        | -       | -         | -              | -                                      | -                       |

| 0.3839 | 1200 | 0.06          | -       | -         | -              | -                                      | -                       |

| 0.3999 | 1250 | -             | 0.0158  | 0.0641    | 0.9649         | 0.5567                                 | 0.7983                  |

| 0.4159 | 1300 | 0.0565        | -       | -         | -              | -                                      | -                       |

| 0.4479 | 1400 | 0.0565        | -       | -         | -              | -                                      | -                       |

| 0.4798 | 1500 | 0.0475        | 0.0154  | 0.0578    | 0.9645         | 0.5614                                 | 0.8062                  |

| 0.5118 | 1600 | 0.0596        | -       | -         | -              | -                                      | -                       |

| 0.5438 | 1700 | 0.0509        | -       | -         | -              | -                                      | -                       |

| 0.5598 | 1750 | -             | 0.0150  | 0.0525    | 0.9674         | 0.5762                                 | 0.8092                  |

| 0.5758 | 1800 | 0.0403        | -       | -         | -              | -                                      | -                       |

| 0.6078 | 1900 | 0.0431        | -       | -         | -              | -                                      | -                       |

| 0.6398 | 2000 | 0.0481        | 0.0150  | 0.0531    | 0.9689         | 0.5824                                 | 0.8128                  |

| 0.6718 | 2100 | 0.05          | -       | -         | -              | -                                      | -                       |

| 0.7038 | 2200 | 0.0468        | -       | -         | -              | -                                      | -                       |

| 0.7198 | 2250 | -             | 0.0146  | 0.0486    | 0.9684         | 0.5756                                 | 0.8195                  |

| 0.7358 | 2300 | 0.0436        | -       | -         | -              | -                                      | -                       |

| 0.7678 | 2400 | 0.0409        | -       | -         | -              | -                                      | -                       |

| 0.7997 | 2500 | 0.0391        | 0.0145  | 0.0454    | 0.9705         | 0.5822                                 | 0.8190                  |

| 0.8317 | 2600 | 0.0412        | -       | -         | -              | -                                      | -                       |

| 0.8637 | 2700 | 0.0373        | -       | -         | -              | -                                      | -                       |

| 0.8797 | 2750 | -             | 0.0143  | 0.0451    | 0.9705         | 0.5889                                 | 0.8229                  |

| 0.8957 | 2800 | 0.0428        | -       | -         | -              | -                                      | -                       |

| 0.9277 | 2900 | 0.0419        | -       | -         | -              | -                                      | -                       |

| 0.9597 | 3000 | 0.0376        | 0.0143  | 0.0435    | 0.9709         | 0.5889                                 | 0.8230                  |

| 0.9917 | 3100 | 0.0366        | -       | -         | -              | -                                      | -                       |





### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 0.084 kWh

- **Carbon Emitted**: 0.033 kg of CO2

- **Hours Used**: 0.399 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 3.0.0.dev0

- Transformers: 4.41.0.dev0

- PyTorch: 2.3.0+cu121

- Accelerate: 0.26.1

- Datasets: 2.18.0

- Tokenizers: 0.19.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply}, 

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



#### ContrastiveLoss

```bibtex

@inproceedings{hadsell2006dimensionality,

    author={Hadsell, R. and Chopra, S. and LeCun, Y.},

    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, 

    title={Dimensionality Reduction by Learning an Invariant Mapping}, 

    year={2006},

    volume={2},

    number={},

    pages={1735-1742},

    doi={10.1109/CVPR.2006.100}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->