tomaarsen's picture
tomaarsen HF staff
Add new SentenceTransformer model.
69465e4 verified
---
language:
- en
- multilingual
- ar
- bg
- ca
- cs
- da
- de
- el
- es
- et
- fa
- fi
- fr
- gl
- gu
- he
- hi
- hr
- hu
- hy
- id
- it
- ja
- ka
- ko
- ku
- lt
- lv
- mk
- mn
- mr
- ms
- my
- nb
- nl
- pl
- pt
- ro
- ru
- sk
- sl
- sq
- sr
- sv
- th
- tr
- uk
- ur
- vi
- zh
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MSELoss
base_model: FacebookAI/xlm-roberta-base
metrics:
- negative_mse
- src2trg_accuracy
- trg2src_accuracy
- mean_accuracy
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Grazie tante.
sentences:
- Grazie infinite.
- Non c'è un solo architetto diplomato in tutta la Contea.
- Le aziende non credevano che fosse loro responsabilità.
- source_sentence: Avance rapide.
sentences:
- Très bien.
- Donc, je voulais faire quelque chose de spécial aujourd'hui.
- Et ils ne tiennent pas non plus compte des civils qui souffrent de façon plus
générale.
- source_sentence: E' importante.
sentences:
- E' una materia fondamentale.
- Sono qui oggi per mostrare le mie fotografie dei Lakota.
- Non ero seguito da un corteo di macchine.
- source_sentence: Müfettişler…
sentences:
- İşçi sınıfına dair birşey.
- Antlaşmaya göre, o topraklar bağımsız bir ulustur.
- Son derece düz ve bataklık bir coğrafya.
- source_sentence: Wir sind eins.
sentences:
- Das versuchen wir zu bieten.
- Ihre Gehirne sind ungefähr 100 Millionen Mal komplizierter.
- Hinter mir war gar keine Autokolonne.
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 23.27766676567869
energy_consumed: 0.05988563672345058
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.179
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on FacebookAI/xlm-roberta-base
results:
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: en ar
type: en-ar
metrics:
- type: negative_mse
value: -20.395545661449432
name: Negative Mse
- task:
type: translation
name: Translation
dataset:
name: en ar
type: en-ar
metrics:
- type: src2trg_accuracy
value: 0.7603222557905337
name: Src2Trg Accuracy
- type: trg2src_accuracy
value: 0.7824773413897281
name: Trg2Src Accuracy
- type: mean_accuracy
value: 0.7713997985901309
name: Mean Accuracy
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 en ar test
type: sts17-en-ar-test
metrics:
- type: pearson_cosine
value: 0.40984231242712876
name: Pearson Cosine
- type: spearman_cosine
value: 0.4425400227662121
name: Spearman Cosine
- type: pearson_manhattan
value: 0.4068582195810505
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.4194184278683204
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.38014538983821944
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.38651157412220366
name: Spearman Euclidean
- type: pearson_dot
value: 0.4077636003696869
name: Pearson Dot
- type: spearman_dot
value: 0.37682818098716137
name: Spearman Dot
- type: pearson_max
value: 0.40984231242712876
name: Pearson Max
- type: spearman_max
value: 0.4425400227662121
name: Spearman Max
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: en fr
type: en-fr
metrics:
- type: negative_mse
value: -19.62321847677231
name: Negative Mse
- task:
type: translation
name: Translation
dataset:
name: en fr
type: en-fr
metrics:
- type: src2trg_accuracy
value: 0.8981854838709677
name: Src2Trg Accuracy
- type: trg2src_accuracy
value: 0.8901209677419355
name: Trg2Src Accuracy
- type: mean_accuracy
value: 0.8941532258064516
name: Mean Accuracy
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 fr en test
type: sts17-fr-en-test
metrics:
- type: pearson_cosine
value: 0.5017606394120642
name: Pearson Cosine
- type: spearman_cosine
value: 0.5333594401322842
name: Spearman Cosine
- type: pearson_manhattan
value: 0.4461108010622129
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.45470883061015244
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.44313058261278737
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.44806261424208443
name: Spearman Euclidean
- type: pearson_dot
value: 0.40165874540768454
name: Pearson Dot
- type: spearman_dot
value: 0.41339619568003433
name: Spearman Dot
- type: pearson_max
value: 0.5017606394120642
name: Pearson Max
- type: spearman_max
value: 0.5333594401322842
name: Spearman Max
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: en de
type: en-de
metrics:
- type: negative_mse
value: -19.727922976017
name: Negative Mse
- task:
type: translation
name: Translation
dataset:
name: en de
type: en-de
metrics:
- type: src2trg_accuracy
value: 0.8920282542885973
name: Src2Trg Accuracy
- type: trg2src_accuracy
value: 0.8910191725529768
name: Trg2Src Accuracy
- type: mean_accuracy
value: 0.8915237134207871
name: Mean Accuracy
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 en de test
type: sts17-en-de-test
metrics:
- type: pearson_cosine
value: 0.5262798164154752
name: Pearson Cosine
- type: spearman_cosine
value: 0.5618005565496922
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5084907192868734
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.5218456102379673
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5055278909013912
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.5206420646365548
name: Spearman Euclidean
- type: pearson_dot
value: 0.3742195121194434
name: Pearson Dot
- type: spearman_dot
value: 0.3691237073066472
name: Spearman Dot
- type: pearson_max
value: 0.5262798164154752
name: Pearson Max
- type: spearman_max
value: 0.5618005565496922
name: Spearman Max
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: en es
type: en-es
metrics:
- type: negative_mse
value: -19.472387433052063
name: Negative Mse
- task:
type: translation
name: Translation
dataset:
name: en es
type: en-es
metrics:
- type: src2trg_accuracy
value: 0.9434343434343434
name: Src2Trg Accuracy
- type: trg2src_accuracy
value: 0.9464646464646465
name: Trg2Src Accuracy
- type: mean_accuracy
value: 0.944949494949495
name: Mean Accuracy
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 es en test
type: sts17-es-en-test
metrics:
- type: pearson_cosine
value: 0.4944989376773328
name: Pearson Cosine
- type: spearman_cosine
value: 0.502096516024397
name: Spearman Cosine
- type: pearson_manhattan
value: 0.44447965250345656
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.428444032581959
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.43569887867301704
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.4169602915053127
name: Spearman Euclidean
- type: pearson_dot
value: 0.3751122541083453
name: Pearson Dot
- type: spearman_dot
value: 0.37961391381473436
name: Spearman Dot
- type: pearson_max
value: 0.4944989376773328
name: Pearson Max
- type: spearman_max
value: 0.502096516024397
name: Spearman Max
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: en tr
type: en-tr
metrics:
- type: negative_mse
value: -20.754697918891907
name: Negative Mse
- task:
type: translation
name: Translation
dataset:
name: en tr
type: en-tr
metrics:
- type: src2trg_accuracy
value: 0.743202416918429
name: Src2Trg Accuracy
- type: trg2src_accuracy
value: 0.743202416918429
name: Trg2Src Accuracy
- type: mean_accuracy
value: 0.743202416918429
name: Mean Accuracy
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 en tr test
type: sts17-en-tr-test
metrics:
- type: pearson_cosine
value: 0.5544917743538167
name: Pearson Cosine
- type: spearman_cosine
value: 0.581923120433332
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5103770986779784
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.5087986920849596
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5045523005860614
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.5053157708914061
name: Spearman Euclidean
- type: pearson_dot
value: 0.47262046401401747
name: Pearson Dot
- type: spearman_dot
value: 0.4297595645819756
name: Spearman Dot
- type: pearson_max
value: 0.5544917743538167
name: Pearson Max
- type: spearman_max
value: 0.581923120433332
name: Spearman Max
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: en it
type: en-it
metrics:
- type: negative_mse
value: -19.76993829011917
name: Negative Mse
- task:
type: translation
name: Translation
dataset:
name: en it
type: en-it
metrics:
- type: src2trg_accuracy
value: 0.878147029204431
name: Src2Trg Accuracy
- type: trg2src_accuracy
value: 0.8831822759315207
name: Trg2Src Accuracy
- type: mean_accuracy
value: 0.8806646525679758
name: Mean Accuracy
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 it en test
type: sts17-it-en-test
metrics:
- type: pearson_cosine
value: 0.506365733914274
name: Pearson Cosine
- type: spearman_cosine
value: 0.5250284136808592
name: Spearman Cosine
- type: pearson_manhattan
value: 0.45167598168533407
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.46227952068355316
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.4423426674780287
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.45072801992723094
name: Spearman Euclidean
- type: pearson_dot
value: 0.4201989776020174
name: Pearson Dot
- type: spearman_dot
value: 0.42253906764732746
name: Spearman Dot
- type: pearson_max
value: 0.506365733914274
name: Pearson Max
- type: spearman_max
value: 0.5250284136808592
name: Spearman Max
---
# SentenceTransformer based on FacebookAI/xlm-roberta-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks), [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) and [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) <!-- at revision e73636d4f797dec63c3081bb6ed5c7b0bb3f2089 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
- [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
- [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
- [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
- [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
- [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
- **Languages:** en, multilingual, ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/xlm-roberta-base-multilingual-en-ar-fr-de-es-tr-it")
# Run inference
sentences = [
'Wir sind eins.',
'Das versuchen wir zu bieten.',
'Ihre Gehirne sind ungefähr 100 Millionen Mal komplizierter.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Knowledge Distillation
* Dataset: `en-ar`
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
| Metric | Value |
|:-----------------|:-------------|
| **negative_mse** | **-20.3955** |
#### Translation
* Dataset: `en-ar`
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
| Metric | Value |
|:------------------|:-----------|
| src2trg_accuracy | 0.7603 |
| trg2src_accuracy | 0.7825 |
| **mean_accuracy** | **0.7714** |
#### Semantic Similarity
* Dataset: `sts17-en-ar-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.4098 |
| spearman_cosine | 0.4425 |
| pearson_manhattan | 0.4069 |
| spearman_manhattan | 0.4194 |
| pearson_euclidean | 0.3801 |
| spearman_euclidean | 0.3865 |
| pearson_dot | 0.4078 |
| spearman_dot | 0.3768 |
| pearson_max | 0.4098 |
| **spearman_max** | **0.4425** |
#### Knowledge Distillation
* Dataset: `en-fr`
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
| Metric | Value |
|:-----------------|:-------------|
| **negative_mse** | **-19.6232** |
#### Translation
* Dataset: `en-fr`
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
| Metric | Value |
|:------------------|:-----------|
| src2trg_accuracy | 0.8982 |
| trg2src_accuracy | 0.8901 |
| **mean_accuracy** | **0.8942** |
#### Semantic Similarity
* Dataset: `sts17-fr-en-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.5018 |
| spearman_cosine | 0.5334 |
| pearson_manhattan | 0.4461 |
| spearman_manhattan | 0.4547 |
| pearson_euclidean | 0.4431 |
| spearman_euclidean | 0.4481 |
| pearson_dot | 0.4017 |
| spearman_dot | 0.4134 |
| pearson_max | 0.5018 |
| **spearman_max** | **0.5334** |
#### Knowledge Distillation
* Dataset: `en-de`
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
| Metric | Value |
|:-----------------|:-------------|
| **negative_mse** | **-19.7279** |
#### Translation
* Dataset: `en-de`
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
| Metric | Value |
|:------------------|:-----------|
| src2trg_accuracy | 0.892 |
| trg2src_accuracy | 0.891 |
| **mean_accuracy** | **0.8915** |
#### Semantic Similarity
* Dataset: `sts17-en-de-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.5263 |
| spearman_cosine | 0.5618 |
| pearson_manhattan | 0.5085 |
| spearman_manhattan | 0.5218 |
| pearson_euclidean | 0.5055 |
| spearman_euclidean | 0.5206 |
| pearson_dot | 0.3742 |
| spearman_dot | 0.3691 |
| pearson_max | 0.5263 |
| **spearman_max** | **0.5618** |
#### Knowledge Distillation
* Dataset: `en-es`
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
| Metric | Value |
|:-----------------|:-------------|
| **negative_mse** | **-19.4724** |
#### Translation
* Dataset: `en-es`
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
| Metric | Value |
|:------------------|:-----------|
| src2trg_accuracy | 0.9434 |
| trg2src_accuracy | 0.9465 |
| **mean_accuracy** | **0.9449** |
#### Semantic Similarity
* Dataset: `sts17-es-en-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.4945 |
| spearman_cosine | 0.5021 |
| pearson_manhattan | 0.4445 |
| spearman_manhattan | 0.4284 |
| pearson_euclidean | 0.4357 |
| spearman_euclidean | 0.417 |
| pearson_dot | 0.3751 |
| spearman_dot | 0.3796 |
| pearson_max | 0.4945 |
| **spearman_max** | **0.5021** |
#### Knowledge Distillation
* Dataset: `en-tr`
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
| Metric | Value |
|:-----------------|:-------------|
| **negative_mse** | **-20.7547** |
#### Translation
* Dataset: `en-tr`
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
| Metric | Value |
|:------------------|:-----------|
| src2trg_accuracy | 0.7432 |
| trg2src_accuracy | 0.7432 |
| **mean_accuracy** | **0.7432** |
#### Semantic Similarity
* Dataset: `sts17-en-tr-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.5545 |
| spearman_cosine | 0.5819 |
| pearson_manhattan | 0.5104 |
| spearman_manhattan | 0.5088 |
| pearson_euclidean | 0.5046 |
| spearman_euclidean | 0.5053 |
| pearson_dot | 0.4726 |
| spearman_dot | 0.4298 |
| pearson_max | 0.5545 |
| **spearman_max** | **0.5819** |
#### Knowledge Distillation
* Dataset: `en-it`
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
| Metric | Value |
|:-----------------|:-------------|
| **negative_mse** | **-19.7699** |
#### Translation
* Dataset: `en-it`
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
| Metric | Value |
|:------------------|:-----------|
| src2trg_accuracy | 0.8781 |
| trg2src_accuracy | 0.8832 |
| **mean_accuracy** | **0.8807** |
#### Semantic Similarity
* Dataset: `sts17-it-en-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:----------|
| pearson_cosine | 0.5064 |
| spearman_cosine | 0.525 |
| pearson_manhattan | 0.4517 |
| spearman_manhattan | 0.4623 |
| pearson_euclidean | 0.4423 |
| spearman_euclidean | 0.4507 |
| pearson_dot | 0.4202 |
| spearman_dot | 0.4225 |
| pearson_max | 0.5064 |
| **spearman_max** | **0.525** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### en-ar
* Dataset: [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
* Size: 5,000 training samples
* Columns: <code>non_english</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | non_english | label |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 27.3 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| non_english | label |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
| <code>حسناً ان ما نقوم به اليوم .. هو ان نجبر الطلاب لتعلم الرياضيات</code> | <code>[0.3943225145339966, 0.18910610675811768, -0.3788299858570099, 0.4386662542819977, 0.2727023661136627, ...]</code> |
| <code>انها المادة الاهم ..</code> | <code>[0.6257511377334595, -0.1750679910182953, -0.5734405517578125, 0.11480475962162018, 1.1682192087173462, ...]</code> |
| <code>انا لا انفي لدقيقة واحدة ان الذين يهتمون بالحسابات اليدوية والذين هوايتهم القيام بذلك .. او القيام بالطرق التقليدية في اي مجال ان يقوموا بذلك كما يريدون .</code> | <code>[-0.04564047232270241, 0.4971524775028229, 0.28066301345825195, -0.726702094078064, -0.17846377193927765, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
#### en-fr
* Dataset: [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
* Size: 5,000 training samples
* Columns: <code>non_english</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | non_english | label |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 3 tokens</li><li>mean: 30.18 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| non_english | label |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
| <code>Je ne crois pas que ce soit justifié.</code> | <code>[-0.361753910779953, 0.7323777079582214, 0.6518164277076721, -0.8461216688156128, -0.007496988866478205, ...]</code> |
| <code>Je fais cette distinction entre ce qu'on force les gens à faire et les matières générales, et la matière que quelqu'un va apprendre parce que ça lui plait et peut-être même exceller dans ce domaine.</code> | <code>[0.3047865629196167, 0.5270194411277771, 0.26616284251213074, 0.2612147927284241, 0.1950961947441101, ...]</code> |
| <code>Quels sont les problèmes en relation avec ça?</code> | <code>[0.2123892903327942, -0.09616081416606903, -0.41965243220329285, -0.5469444394111633, -0.6056491136550903, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
#### en-de
* Dataset: [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
* Size: 5,000 training samples
* Columns: <code>non_english</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | non_english | label |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 27.04 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| non_english | label |
|:----------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
| <code>Ich denke, dass es sich aus diesem Grund lohnt, den Leuten das Rechnen von Hand beizubringen.</code> | <code>[0.0960279330611229, 0.7833179831504822, -0.09527698159217834, 0.8104371428489685, 0.7545774579048157, ...]</code> |
| <code>Außerdem gibt es ein paar bestimmte konzeptionelle Dinge, die das Rechnen per Hand rechtfertigen, aber ich glaube es sind sehr wenige.</code> | <code>[-0.5939837098121643, 0.9714100956916809, 0.6800686717033386, -0.21585524082183838, -0.7509503364562988, ...]</code> |
| <code>Eine Sache, die ich mich oft frage, ist Altgriechisch, und wie das zusammengehört.</code> | <code>[-0.09777048230171204, 0.07093209028244019, -0.42989012598991394, -0.1457514613866806, 1.4382753372192383, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
#### en-es
* Dataset: [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
* Size: 5,000 training samples
* Columns: <code>non_english</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | non_english | label |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 25.42 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| non_english | label |
|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
| <code>Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos.</code> | <code>[-0.5939835906028748, 0.9714106917381287, 0.6800685524940491, -0.2158554196357727, -0.7509507536888123, ...]</code> |
| <code>Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona.</code> | <code>[-0.09777048230171204, 0.07093209028244019, -0.42989012598991394, -0.1457514613866806, 1.4382753372192383, ...]</code> |
| <code>Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas.</code> | <code>[0.3943225145339966, 0.18910610675811768, -0.3788299858570099, 0.4386662542819977, 0.2727023661136627, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
#### en-tr
* Dataset: [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
* Size: 5,000 training samples
* Columns: <code>non_english</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | non_english | label |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 24.72 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| non_english | label |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
| <code>Eğer insanlar elle hesaba ilgililerse ya da öğrenmek için özel amaçları varsa konu ne kadar acayip olursa olsun bunu öğrenmeliler, engellemeyi bir an için bile önermiyorum.</code> | <code>[-0.04564047232270241, 0.4971524775028229, 0.28066301345825195, -0.726702094078064, -0.17846377193927765, ...]</code> |
| <code>İnsanların kendi ilgi alanlarını takip etmeleri, kesinlikle doğru bir şeydir.</code> | <code>[0.2061387449502945, 0.5284574031829834, 0.3577779233455658, 0.28818392753601074, 0.17228049039840698, ...]</code> |
| <code>Ben bir biçimde Antik Yunan hakkında ilgiliyimdir. ancak tüm nüfusu Antik Yunan gibi bir konu hakkında bilgi edinmeye zorlamamalıyız.</code> | <code>[0.12050342559814453, 0.15652479231357574, 0.48636534810066223, -0.13693244755268097, 0.42764803767204285, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
#### en-it
* Dataset: [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
* Size: 5,000 training samples
* Columns: <code>non_english</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | non_english | label |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 3 tokens</li><li>mean: 26.41 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| non_english | label |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
| <code>Non credo che sia giustificato.</code> | <code>[-0.36175352334976196, 0.7323781251907349, 0.651816189289093, -0.8461223840713501, -0.007496151141822338, ...]</code> |
| <code>Perciò faccio distinzione tra quello che stiamo facendo fare alle persone, le materie che si ritengono principali, e le materie che le persone potrebbero seguire per loro interesse o forse a volte anche incitate a farlo.</code> | <code>[0.3047865927219391, 0.5270194411277771, 0.26616284251213074, 0.2612147927284241, 0.1950961947441101, ...]</code> |
| <code>Ma che argomenti porta la gente su questi temi?</code> | <code>[0.2123885154724121, -0.09616123884916306, -0.4196523427963257, -0.5469440817832947, -0.6056501865386963, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
### Evaluation Datasets
#### en-ar
* Dataset: [en-ar](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
* Size: 993 evaluation samples
* Columns: <code>non_english</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | non_english | label |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 3 tokens</li><li>mean: 28.03 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| non_english | label |
|:------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
| <code>شكرا جزيلا كريس.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
| <code>انه فعلا شرف عظيم لي ان أصعد المنصة للمرة الثانية. أنا في غاية الامتنان.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
| <code>لقد بهرت فعلا بهذا المؤتمر, وأريد أن أشكركم جميعا على تعليقاتكم الطيبة على ما قلته تلك الليلة.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
#### en-fr
* Dataset: [en-fr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
* Size: 992 evaluation samples
* Columns: <code>non_english</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | non_english | label |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 30.72 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| non_english | label |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
| <code>Merci beaucoup, Chris.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
| <code>C'est vraiment un honneur de pouvoir venir sur cette scène une deuxième fois. Je suis très reconnaissant.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
| <code>J'ai été très impressionné par cette conférence, et je tiens à vous remercier tous pour vos nombreux et sympathiques commentaires sur ce que j'ai dit l'autre soir.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
#### en-de
* Dataset: [en-de](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
* Size: 991 evaluation samples
* Columns: <code>non_english</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | non_english | label |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 27.71 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| non_english | label |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
| <code>Vielen Dank, Chris.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
| <code>Es ist mir wirklich eine Ehre, zweimal auf dieser Bühne stehen zu dürfen. Tausend Dank dafür.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
| <code>Ich bin wirklich begeistert von dieser Konferenz, und ich danke Ihnen allen für die vielen netten Kommentare zu meiner Rede vorgestern Abend.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
#### en-es
* Dataset: [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
* Size: 990 evaluation samples
* Columns: <code>non_english</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | non_english | label |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 26.47 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| non_english | label |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
| <code>Muchas gracias Chris.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
| <code>Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
| <code>He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
#### en-tr
* Dataset: [en-tr](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
* Size: 993 evaluation samples
* Columns: <code>non_english</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | non_english | label |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 25.4 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| non_english | label |
|:----------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
| <code>Çok teşekkür ederim Chris.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
| <code>Bu sahnede ikinci kez yer alma fırsatına sahip olmak gerçekten büyük bir onur. Çok minnettarım.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
| <code>Bu konferansta çok mutlu oldum, ve anlattıklarımla ilgili güzel yorumlarınız için sizlere çok teşekkür ederim.</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
#### en-it
* Dataset: [en-it](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [d366ddd](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/d366dddc3d1ef0421a41f9e534bad4efae6d7730)
* Size: 993 evaluation samples
* Columns: <code>non_english</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | non_english | label |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 27.94 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| non_english | label |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
| <code>Grazie mille, Chris.</code> | <code>[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]</code> |
| <code>E’ veramente un grande onore venire su questo palco due volte. Vi sono estremamente grato.</code> | <code>[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]</code> |
| <code>Sono impressionato da questa conferenza, e voglio ringraziare tutti voi per i tanti, lusinghieri commenti, anche perché... Ne ho bisogno!!</code> | <code>[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: False
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: None
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | en-ar loss | en-it loss | en-de loss | en-fr loss | en-es loss | en-tr loss | en-ar_mean_accuracy | en-ar_negative_mse | en-de_mean_accuracy | en-de_negative_mse | en-es_mean_accuracy | en-es_negative_mse | en-fr_mean_accuracy | en-fr_negative_mse | en-it_mean_accuracy | en-it_negative_mse | en-tr_mean_accuracy | en-tr_negative_mse | sts17-en-ar-test_spearman_max | sts17-en-de-test_spearman_max | sts17-en-tr-test_spearman_max | sts17-es-en-test_spearman_max | sts17-fr-en-test_spearman_max | sts17-it-en-test_spearman_max |
|:------:|:----:|:-------------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-------------------:|:------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|
| 0.2110 | 100 | 0.5581 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4219 | 200 | 0.3071 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6329 | 300 | 0.2675 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8439 | 400 | 0.2606 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.0549 | 500 | 0.2589 | 0.2519 | 0.2498 | 0.2511 | 0.2488 | 0.2503 | 0.2512 | 0.1254 | -25.1903 | 0.2523 | -25.1089 | 0.2591 | -25.0276 | 0.2409 | -24.8803 | 0.2180 | -24.9768 | 0.1158 | -25.1219 | 0.0308 | 0.1281 | 0.1610 | 0.1465 | 0.0552 | 0.0518 |
| 1.2658 | 600 | 0.2504 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.4768 | 700 | 0.2427 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.6878 | 800 | 0.2337 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1.8987 | 900 | 0.2246 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.1097 | 1000 | 0.2197 | 0.2202 | 0.2157 | 0.2151 | 0.2147 | 0.2139 | 0.2218 | 0.5841 | -22.0204 | 0.8012 | -21.5087 | 0.8495 | -21.3935 | 0.7959 | -21.4660 | 0.7815 | -21.5699 | 0.6007 | -22.1778 | 0.3346 | 0.4013 | 0.4727 | 0.3353 | 0.3827 | 0.3292 |
| 2.3207 | 1100 | 0.2163 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.5316 | 1200 | 0.2123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.7426 | 1300 | 0.2069 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2.9536 | 1400 | 0.2048 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 3.1646 | 1500 | 0.2009 | 0.2086 | 0.2029 | 0.2022 | 0.2012 | 0.2002 | 0.2111 | 0.7367 | -20.8567 | 0.8739 | -20.2247 | 0.9303 | -20.0215 | 0.8755 | -20.1213 | 0.8600 | -20.2900 | 0.7165 | -21.1119 | 0.4087 | 0.5473 | 0.5551 | 0.4724 | 0.4882 | 0.4690 |
| 3.3755 | 1600 | 0.2019 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 3.5865 | 1700 | 0.1989 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 3.7975 | 1800 | 0.196 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 4.0084 | 1900 | 0.1943 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 4.2194 | 2000 | 0.194 | 0.2040 | 0.1977 | 0.1973 | 0.1962 | 0.1947 | 0.2075 | 0.7714 | -20.3955 | 0.8915 | -19.7279 | 0.9449 | -19.4724 | 0.8942 | -19.6232 | 0.8807 | -19.7699 | 0.7432 | -20.7547 | 0.4425 | 0.5618 | 0.5819 | 0.5021 | 0.5334 | 0.5250 |
| 4.4304 | 2100 | 0.1951 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 4.6414 | 2200 | 0.1928 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 4.8523 | 2300 | 0.1909 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.060 kWh
- **Carbon Emitted**: 0.023 kg of CO2
- **Hours Used**: 0.179 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MSELoss
```bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->