Pythia Alpaca LoRA
Collection
4 items
•
Updated
axolotl version: 0.4.1
base_model: EleutherAI/pythia-160m-deduped
load_in_8bit: true
datasets:
- path: teknium/GPT4-LLM-Cleaned
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
adapter: lora
lora_model_dir:
sequence_len: 512
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
- query_key_value
- dense
- dense_h_to_4h
- dense_4h_to_h
lora_target_linear:
lora_fan_in_fan_out: true # pythia/GPTNeoX lora specific
output_dir: ./outputs/lora-alpaca-pythia
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 4
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: auto
tf32: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
weight_decay: 0.1
evals_per_epoch: 4
logging_steps: 1
push_to_hub: tommyp111/pythia-160m-deduped-alpaca-lora
wandb_project: pythia-alpaca-lora
wandb_name: pythia-160m
max_grad_norm: 2.0
This model is a fine-tuned version of EleutherAI/pythia-160m-deduped on the None dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
8.6028 | 0.0001 | 1 | 43.0831 |
2.7877 | 0.25 | 3190 | 3.9830 |
2.6991 | 0.5 | 6380 | 3.2686 |
2.5373 | 0.75 | 9570 | 3.2401 |
2.4498 | 1.0 | 12760 | 3.0415 |
2.9168 | 1.25 | 15950 | 3.0911 |
2.1057 | 1.5 | 19140 | 2.9493 |
2.1088 | 1.75 | 22330 | 2.9256 |
2.3546 | 2.0 | 25520 | 2.9625 |
2.4666 | 2.25 | 28710 | 2.9406 |
2.9943 | 2.5 | 31900 | 2.8396 |
2.1245 | 2.75 | 35090 | 2.8112 |
2.7812 | 3.0 | 38280 | 2.8326 |
2.3245 | 3.25 | 41470 | 2.8359 |
2.499 | 3.5 | 44660 | 2.8282 |
2.3163 | 3.75 | 47850 | 2.8230 |
2.3762 | 4.0 | 51040 | 2.8091 |
Base model
EleutherAI/pythia-160m-deduped