|
--- |
|
library_name: peft |
|
base_model: beomi/open-llama-2-ko-7b |
|
license: cc-by-sa-4.0 |
|
datasets: |
|
- traintogpb/aihub-flores-koen-integrated-sparta-30k |
|
language: |
|
- en |
|
- ko |
|
metrics: |
|
- sacrebleu |
|
- comet |
|
pipeline_tag: translation |
|
tags: |
|
- translation |
|
- text-generation |
|
- ko2en |
|
- en2ko |
|
--- |
|
### Pretrained LM |
|
- [beomi/open-llama-2-ko-7b](https://huggingface.co/beomi/open-llama-2-ko-7b) (MIT License) |
|
|
|
### Training Dataset |
|
- [traintogpb/aihub-flores-koen-integrated-sparta-30k](https://huggingface.co/datasets/traintogpb/aihub-flores-koen-integrated-sparta-30k) |
|
- Can translate in Enlgish-Korean (bi-directional) |
|
|
|
### Prompt |
|
- Template: |
|
```python |
|
prompt = f"Translate this from {src_lang} to {tgt_lang}\n### {src_lang}: {src_text}\n### {tgt_lang}:" |
|
|
|
>>> # src_lang can be 'English', '한국어' |
|
>>> # tgt_lang can be '한국어', 'English' |
|
``` |
|
|
|
- Issue: |
|
The tokenizer of the model tokenizes the prompt below in different way with the prompt above. |
|
Make sure to use the prompt proposed above. |
|
```python |
|
prompt = f"""Translate this from {src_lang} to {tgt_lang} |
|
### {src_lang}: {src_text} |
|
### {tgt_lang}:""" |
|
|
|
>>> # DO NOT USE this prompt |
|
``` |
|
And mind that there is no "space (`_`)" at the end of the prompt. |
|
|
|
### Training |
|
- Trained with QLoRA |
|
- PLM: NormalFloat 4-bit |
|
- Adapter: BrainFloat 16-bit |
|
- Adapted to all the linear layers (around 2.2%) |
|
|
|
### Usage (IMPORTANT) |
|
- Should remove the EOS token (`<|endoftext|>`, id=46332) at the end of the prompt. |
|
```python |
|
# MODEL |
|
plm_name = 'beomi/open-llama-2-ko-7b' |
|
adapter_name = 'traintogpb/llama-2-enko-translator-7b-qlora-adapter' |
|
model = LlamaForCausalLM.from_pretrained( |
|
plm_name, |
|
max_length=768, |
|
quantization_config=bnb_config, # Use the QLoRA config above |
|
attn_implementation='flash_attention_2', |
|
torch_dtype=torch.bfloat16 |
|
) |
|
model = PeftModel.from_pretrained( |
|
model, |
|
adapter_name, |
|
torch_dtype=torch.bfloat16 |
|
) |
|
|
|
# TOKENIZER |
|
tokenizer = LlamaTokenizer.from_pretrained(plm_name) |
|
tokenizer.pad_token = "</s>" |
|
tokenizer.pad_token_id = 2 |
|
tokenizer.eos_token = "<|endoftext|>" # Must be differentiated from the PAD token |
|
tokenizer.eos_token_id = 46332 |
|
tokenizer.add_eos_token = True |
|
tokenizer.model_max_length = 768 |
|
|
|
# INFERENCE |
|
text = "NMIXX is the world-best female idol group, who came back with the new song 'DASH'." |
|
prompt = f"Translate this from {src_lang} to {tgt_lang}\n### {src_lang}: {src_text}\n### {tgt_lang}:" |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt", max_length=max_length, truncation=True) |
|
# REMOVE EOS TOKEN IN THE PROMPT |
|
inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0) |
|
inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0) |
|
|
|
outputs = model.generate(**inputs, max_length=max_length, eos_token_id=46332) |
|
|
|
input_len = len(inputs['input_ids'].squeeze()) |
|
|
|
translated_text = tokenizer.decode(outputs[0][input_len:], skip_special_tokens=True) |
|
print(translated_text) |
|
``` |