traintogpb's picture
Update README.md
9f028ec verified
---
library_name: peft
base_model: beomi/open-llama-2-ko-7b
license: cc-by-sa-4.0
datasets:
- traintogpb/aihub-flores-koen-integrated-sparta-30k
language:
- en
- ko
metrics:
- sacrebleu
- comet
pipeline_tag: translation
tags:
- translation
- text-generation
- ko2en
- en2ko
---
### Pretrained LM
- [beomi/open-llama-2-ko-7b](https://huggingface.co/beomi/open-llama-2-ko-7b) (MIT License)
### Training Dataset
- [traintogpb/aihub-flores-koen-integrated-sparta-30k](https://huggingface.co/datasets/traintogpb/aihub-flores-koen-integrated-sparta-30k)
- Can translate in Enlgish-Korean (bi-directional)
### Prompt
- Template:
```python
prompt = f"Translate this from {src_lang} to {tgt_lang}\n### {src_lang}: {src_text}\n### {tgt_lang}:"
>>> # src_lang can be 'English', '한국어'
>>> # tgt_lang can be '한국어', 'English'
```
- Issue:
The tokenizer of the model tokenizes the prompt below in different way with the prompt above.
Make sure to use the prompt proposed above.
```python
prompt = f"""Translate this from {src_lang} to {tgt_lang}
### {src_lang}: {src_text}
### {tgt_lang}:"""
>>> # DO NOT USE this prompt
```
And mind that there is no "space (`_`)" at the end of the prompt.
### Training
- Trained with QLoRA
- PLM: NormalFloat 4-bit
- Adapter: BrainFloat 16-bit
- Adapted to all the linear layers (around 2.2%)
### Usage (IMPORTANT)
- Should remove the EOS token (`<|endoftext|>`, id=46332) at the end of the prompt.
```python
# MODEL
plm_name = 'beomi/open-llama-2-ko-7b'
adapter_name = 'traintogpb/llama-2-enko-translator-7b-qlora-adapter'
model = LlamaForCausalLM.from_pretrained(
plm_name,
max_length=768,
quantization_config=bnb_config, # Use the QLoRA config above
attn_implementation='flash_attention_2',
torch_dtype=torch.bfloat16
)
model = PeftModel.from_pretrained(
model,
adapter_name,
torch_dtype=torch.bfloat16
)
# TOKENIZER
tokenizer = LlamaTokenizer.from_pretrained(plm_name)
tokenizer.pad_token = "</s>"
tokenizer.pad_token_id = 2
tokenizer.eos_token = "<|endoftext|>" # Must be differentiated from the PAD token
tokenizer.eos_token_id = 46332
tokenizer.add_eos_token = True
tokenizer.model_max_length = 768
# INFERENCE
text = "NMIXX is the world-best female idol group, who came back with the new song 'DASH'."
prompt = f"Translate this from {src_lang} to {tgt_lang}\n### {src_lang}: {src_text}\n### {tgt_lang}:"
inputs = tokenizer(prompt, return_tensors="pt", max_length=max_length, truncation=True)
# REMOVE EOS TOKEN IN THE PROMPT
inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0)
inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0)
outputs = model.generate(**inputs, max_length=max_length, eos_token_id=46332)
input_len = len(inputs['input_ids'].squeeze())
translated_text = tokenizer.decode(outputs[0][input_len:], skip_special_tokens=True)
print(translated_text)
```