traintogpb's picture
Update README.md
e6abda5 verified
metadata
license: cc-by-nc-sa-4.0
datasets:
  - traintogpb/aihub-flores-koen-integrated-sparta-small-30k
language:
  - en
  - ko
metrics:
  - sacrebleu
  - xcomet
pipeline_tag: translation
tags:
  - translation
  - text-generation
  - ko2en
  - en2ko

Pretrained LM

Training Dataset

Prompt

  • Template:

      prompt = f"Translate this from {src_lang} to {tgt_lang}\n### {src_lang}: {src_text}\n### {tgt_lang}:"
    
      >>> # src_lang can be 'English', '한국어'
      >>> # tgt_lang can be '한국어', 'English'
    

    Mind that there is no "space (_)" at the end of the prompt (unpredictable first token will be popped up).

  • Issue: The tokenizer of the model tokenizes the prompt below in different way with the prompt above. Make sure to use the prompt proposed above.

      >>> # DO NOT USE the prompt like this
      prompt = f"""Translate this from {src_lang} to {tgt_lang}
      ### {src_lang}: {src_text}
      ### {tgt_lang}:"""
    

Training

  • Trained with QLoRA
    • PLM: NormalFloat 4-bit
    • Adapter: BrainFloat 16-bit
    • Adapted to all the linear layers (around 2.2%)
  • Merge adapters and upscaled in BrainFloat 16-bit precision

Usage (IMPORTANT)

  • Should remove the EOS token (<|endoftext|>, id=46332) at the end of the prompt.
      # MODEL
      model_name = 'traintogpb/llama-2-enko-translator-7b-qlora-bf16-upscaled'
      model = LlamaForCausalLM.from_pretrained(
          model_name,
          max_length=768,
          torch_dtype=torch.bfloat16
      )
    
      # TOKENIZER
      tokenizer = LlamaTokenizer.from_pretrained(plm_name)
      tokenizer.pad_token = "</s>"
      tokenizer.pad_token_id = 2
      tokenizer.eos_token = "<|endoftext|>" # Must be differentiated from the PAD token
      tokenizer.eos_token_id = 46332
      tokenizer.add_eos_token = False
      tokenizer.model_max_length = 768
    
      # INFERENCE
      text = "NMIXX is the world-best female idol group, who came back with the new song 'DASH'."
      src_lang, tgt_lang = 'English', '한국어'
      prompt = f"Translate this from {src_lang} to {tgt_lang}\n### {src_lang}: {src_text}\n### {tgt_lang}:"
    
      inputs = tokenizer(prompt, return_tensors="pt", max_length=max_length, truncation=True)
      # REMOVE EOS TOKEN IN THE PROMPT
      if inputs['input_ids'][0][-1] == tokenizer.eos_token_id:
          inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0)
          inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0)
    
      outputs = model.generate(**inputs, max_length=max_length, eos_token_id=tokenizer.eos_token_id)
    
      input_len = len(inputs['input_ids'].squeeze())
      
      translated_text = tokenizer.decode(outputs[0][input_len:], skip_special_tokens=True)
      print(translated_text)