metadata
library_name: peft
base_model: beomi/open-llama-2-ko-7b
license: cc-by-sa-4.0
datasets:
- traintogpb/aihub-flores-koen-integrated-sparta-mini-300k
language:
- en
- ko
pipeline_tag: translation
Pretrained LM
- beomi/Llama-3-Open-Ko-8B (MIT License)
Training Dataset
- traintogpb/aihub-flores-koen-integrated-sparta-mini-300k
- Can translate in Enlgish-Korean (bi-directional)
Prompt
- Template:
Mind that there is a "space (prompt = f"Translate this from {src_lang} to {tgt_lang}\n### {src_lang}: {src_text}\n### {tgt_lang}: " >>> # src_lang can be 'English', '한국어' >>> # tgt_lang can be '한국어', 'English'
_
)" at the end of the prompt (unpredictable first token will be popped up). But if you use vLLM, it's okay to remove the final space(_
).
Training
- Trained with QLoRA
- PLM: NormalFloat 4-bit
- Adapter: BrainFloat 16-bit
- Adapted to all the linear layers (around 2.05%)
- Merge adapters and upscaled in BrainFloat 16-bit precision
Usage (IMPORTANT)
- Should remove the EOS token at the end of the prompt.
# MODEL model_name = 'beomi/Llama-3-Open-Ko-8B' adapter_name = 'traintogpb/llama-3-enko-translator-8b-qlora-adapter' bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type='nf4', bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True ) model = AutoModelForCausalLM.from_pretrained( model_name, max_length=768, quantization_config=bnb_config, attn_implementation='flash_attention_2', torch_dtype=torch.bfloat16, ) model = PeftModel.from_pretrained( model, adapter_path=adapter_name, torch_dtype=torch.bfloat16, ) tokenizer = AutoTokenizer.from_pretrained(adapter_name) tokenizer.pad_token_id = 128002 # eos_token_id and pad_token_id should be different text = "Someday, QWER will be the greatest girl band in the world." input_prompt = f"Translate this from English to 한국어.\n### English: {text}\n### 한국어:" inputs = tokenizer(input_prompt, max_length=768, truncation=True, return_tensors='pt') if inputs['input_ids'][0][-1] == tokenizer.eos_token_id: inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0) inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0) outputs = model.generate(**inputs, max_length=768, eos_token_id=tokenizer.eos_token_id) input_len = len(inputs['input_ids'].squeeze()) translation = tokenizer.decode(outputs[0][input_len:], skip_special_tokens=True) print(translation)
Framework versions
- PEFT 0.8.2