aadityap's picture
End of training
33d7c4e verified
metadata
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
  - trl
  - sft
  - generated_from_trainer
datasets:
  - barc0/induction_heavy_100k_jsonl
  - barc0/induction_heavy_suggestfunction_100k_jsonl
  - >-
    barc0/induction_100k-gpt4-description-gpt4omini-code_generated_problems_messages_format_0.3
  - >-
    barc0/induction_100k_gpt4o-mini_generated_problems_seed100.jsonl_messages_format_0.3
model-index:
  - name: l3.1-8b-inst-fft-induction-barc-heavy-200k-old-200k-lr1e-5-ep3
    results: []

l3.1-8b-inst-fft-induction-barc-heavy-200k-old-200k-lr1e-5-ep3

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the barc0/induction_heavy_100k_jsonl, the barc0/induction_heavy_suggestfunction_100k_jsonl, the barc0/induction_100k-gpt4-description-gpt4omini-code_generated_problems_messages_format_0.3 and the barc0/induction_100k_gpt4o-mini_generated_problems_seed100.jsonl_messages_format_0.3 datasets. It achieves the following results on the evaluation set:

  • Loss: 0.3711

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.4395 1.0 2995 0.4231
0.3529 2.0 5990 0.3733
0.2858 3.0 8985 0.3711

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3