fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.25_g1.0-0.05_10_0.004_40
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0608
- Wer: 0.1012
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
533.9511 | 0.94 | 50 | 256.7028 | 15.6243 |
337.9142 | 1.89 | 100 | 82.7848 | 0.9952 |
61.5907 | 2.83 | 150 | 23.0722 | 1.0 |
28.765 | 3.77 | 200 | 21.1465 | 1.0 |
27.4031 | 4.72 | 250 | 20.4765 | 1.0 |
26.4393 | 5.66 | 300 | 19.7334 | 1.0 |
25.6404 | 6.6 | 350 | 19.2024 | 1.0 |
24.6513 | 7.55 | 400 | 18.8785 | 1.0 |
24.1773 | 8.49 | 450 | 18.6720 | 1.0 |
24.4131 | 9.43 | 500 | 18.5339 | 1.0 |
24.0393 | 10.38 | 550 | 18.2257 | 1.0 |
23.0434 | 11.32 | 600 | 14.5791 | 0.7926 |
15.8664 | 12.26 | 650 | 7.8034 | 0.4329 |
9.3173 | 13.21 | 700 | 4.4018 | 0.2799 |
6.3563 | 14.15 | 750 | 3.2101 | 0.2358 |
5.0252 | 15.09 | 800 | 2.6043 | 0.2082 |
4.2585 | 16.04 | 850 | 2.2239 | 0.1825 |
3.7273 | 16.98 | 900 | 1.9758 | 0.1832 |
3.3365 | 17.92 | 950 | 1.7976 | 0.1559 |
3.1388 | 18.87 | 1000 | 1.6666 | 0.1595 |
2.8685 | 19.81 | 1050 | 1.5991 | 0.1669 |
2.6594 | 20.75 | 1100 | 1.4857 | 0.1446 |
2.6179 | 21.7 | 1150 | 1.4291 | 0.1417 |
2.5211 | 22.64 | 1200 | 1.4383 | 0.1519 |
2.3276 | 23.58 | 1250 | 1.3807 | 0.1406 |
2.1864 | 24.53 | 1300 | 1.3551 | 0.1362 |
2.2149 | 25.47 | 1350 | 1.2799 | 0.1335 |
2.0461 | 26.42 | 1400 | 1.2590 | 0.1269 |
2.0038 | 27.36 | 1450 | 1.2624 | 0.1343 |
1.9107 | 28.3 | 1500 | 1.2001 | 0.1253 |
1.9049 | 29.25 | 1550 | 1.1936 | 0.1251 |
1.8057 | 30.19 | 1600 | 1.1986 | 0.1314 |
1.7086 | 31.13 | 1650 | 1.1642 | 0.1225 |
1.7464 | 32.08 | 1700 | 1.1177 | 0.1195 |
1.6634 | 33.02 | 1750 | 1.1247 | 0.1140 |
1.6189 | 33.96 | 1800 | 1.1151 | 0.1114 |
1.5062 | 34.91 | 1850 | 1.1218 | 0.1118 |
1.5323 | 35.85 | 1900 | 1.0949 | 0.1062 |
1.5779 | 36.79 | 1950 | 1.0786 | 0.1104 |
1.4826 | 37.74 | 2000 | 1.0774 | 0.1175 |
1.5034 | 38.68 | 2050 | 1.0891 | 0.1187 |
1.4051 | 39.62 | 2100 | 1.0873 | 0.1229 |
1.4084 | 40.57 | 2150 | 1.0893 | 0.1147 |
1.3231 | 41.51 | 2200 | 1.0818 | 0.1086 |
1.3182 | 42.45 | 2250 | 1.0795 | 0.1145 |
1.2747 | 43.4 | 2300 | 1.0833 | 0.1109 |
1.2657 | 44.34 | 2350 | 1.0797 | 0.1095 |
1.2867 | 45.28 | 2400 | 1.0753 | 0.1053 |
1.2034 | 46.23 | 2450 | 1.0782 | 0.1070 |
1.1649 | 47.17 | 2500 | 1.0685 | 0.1034 |
1.1314 | 48.11 | 2550 | 1.0622 | 0.0979 |
1.158 | 49.06 | 2600 | 1.0880 | 0.1032 |
1.0918 | 50.0 | 2650 | 1.0677 | 0.1022 |
1.0786 | 50.94 | 2700 | 1.0708 | 0.0980 |
1.1275 | 51.89 | 2750 | 1.0576 | 0.0989 |
0.9832 | 52.83 | 2800 | 1.0594 | 0.1048 |
1.0832 | 53.77 | 2850 | 1.0528 | 0.1026 |
1.0483 | 54.72 | 2900 | 1.0524 | 0.1072 |
0.9776 | 55.66 | 2950 | 1.0491 | 0.1049 |
0.972 | 56.6 | 3000 | 1.0471 | 0.1064 |
1.0257 | 57.55 | 3050 | 1.0680 | 0.1104 |
0.9965 | 58.49 | 3100 | 1.0723 | 0.1157 |
0.961 | 59.43 | 3150 | 1.0600 | 0.1040 |
0.9893 | 60.38 | 3200 | 1.0720 | 0.1123 |
0.8888 | 61.32 | 3250 | 1.0598 | 0.1060 |
0.9583 | 62.26 | 3300 | 1.0703 | 0.1057 |
0.8763 | 63.21 | 3350 | 1.0754 | 0.1114 |
0.9151 | 64.15 | 3400 | 1.0769 | 0.1045 |
0.8981 | 65.09 | 3450 | 1.0714 | 0.1014 |
0.8937 | 66.04 | 3500 | 1.0753 | 0.1049 |
0.8897 | 66.98 | 3550 | 1.0775 | 0.1071 |
0.8903 | 67.92 | 3600 | 1.0775 | 0.1039 |
0.8655 | 68.87 | 3650 | 1.0844 | 0.1026 |
0.8845 | 69.81 | 3700 | 1.0831 | 0.1020 |
0.854 | 70.75 | 3750 | 1.0877 | 0.1022 |
0.8797 | 71.7 | 3800 | 1.0739 | 0.1007 |
0.8357 | 72.64 | 3850 | 1.0680 | 0.1018 |
0.822 | 73.58 | 3900 | 1.0628 | 0.1026 |
0.7696 | 74.53 | 3950 | 1.0585 | 0.0995 |
0.8735 | 75.47 | 4000 | 1.0596 | 0.0994 |
0.8212 | 76.42 | 4050 | 1.0574 | 0.0978 |
0.8341 | 77.36 | 4100 | 1.0632 | 0.0998 |
0.8275 | 78.3 | 4150 | 1.0620 | 0.1019 |
0.7727 | 79.25 | 4200 | 1.0592 | 0.1002 |
0.8182 | 80.19 | 4250 | 1.0523 | 0.0969 |
0.813 | 81.13 | 4300 | 1.0672 | 0.1039 |
0.7961 | 82.08 | 4350 | 1.0689 | 0.1014 |
0.7956 | 83.02 | 4400 | 1.0666 | 0.0999 |
0.7853 | 83.96 | 4450 | 1.0648 | 0.1001 |
0.8167 | 84.91 | 4500 | 1.0634 | 0.0986 |
0.779 | 85.85 | 4550 | 1.0633 | 0.1012 |
0.8055 | 86.79 | 4600 | 1.0583 | 0.1004 |
0.7847 | 87.74 | 4650 | 1.0618 | 0.1016 |
0.7961 | 88.68 | 4700 | 1.0615 | 0.1016 |
0.7911 | 89.62 | 4750 | 1.0586 | 0.1017 |
0.7098 | 90.57 | 4800 | 1.0613 | 0.1031 |
0.8353 | 91.51 | 4850 | 1.0596 | 0.1015 |
0.7127 | 92.45 | 4900 | 1.0582 | 0.1012 |
0.824 | 93.4 | 4950 | 1.0597 | 0.1009 |
0.762 | 94.34 | 5000 | 1.0587 | 0.1014 |
0.7424 | 95.28 | 5050 | 1.0596 | 0.1013 |
0.7701 | 96.23 | 5100 | 1.0605 | 0.1011 |
0.7544 | 97.17 | 5150 | 1.0609 | 0.1014 |
0.7844 | 98.11 | 5200 | 1.0606 | 0.1014 |
0.7769 | 99.06 | 5250 | 1.0607 | 0.1012 |
0.7914 | 100.0 | 5300 | 1.0608 | 0.1012 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 1
Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.25_g1.0-0.05_10_0.004_40
Base model
nguyenvulebinh/wav2vec2-base-vietnamese-250h