fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.75_g0.5-0.05_10_0.004_40
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.1140
- Wer: 0.0915
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1629.9275 | 0.94 | 50 | 824.7193 | 15.8408 |
1138.8538 | 1.89 | 100 | 363.0830 | 1.0609 |
228.953 | 2.83 | 150 | 77.0798 | 1.0 |
87.3839 | 3.77 | 200 | 66.6220 | 1.0 |
83.3628 | 4.72 | 250 | 64.3104 | 1.0 |
79.8819 | 5.66 | 300 | 61.3996 | 1.0 |
76.9216 | 6.6 | 350 | 58.9846 | 1.0 |
73.8162 | 7.55 | 400 | 57.3442 | 1.0 |
72.5154 | 8.49 | 450 | 56.7676 | 1.0 |
73.3129 | 9.43 | 500 | 56.7173 | 1.0 |
72.2926 | 10.38 | 550 | 56.5543 | 1.0 |
72.4577 | 11.32 | 600 | 58.1313 | 1.0 |
69.5175 | 12.26 | 650 | 57.4489 | 1.0076 |
64.6635 | 13.21 | 700 | 41.0107 | 0.7747 |
42.1225 | 14.15 | 750 | 18.6933 | 0.3211 |
23.9017 | 15.09 | 800 | 11.5678 | 0.2335 |
17.2962 | 16.04 | 850 | 8.6803 | 0.1841 |
13.8834 | 16.98 | 900 | 7.2569 | 0.1655 |
11.6255 | 17.92 | 950 | 6.2023 | 0.1497 |
10.4288 | 18.87 | 1000 | 5.5896 | 0.1394 |
9.5611 | 19.81 | 1050 | 5.3111 | 0.1419 |
8.7185 | 20.75 | 1100 | 5.0459 | 0.1333 |
8.529 | 21.7 | 1150 | 4.6049 | 0.1241 |
7.9187 | 22.64 | 1200 | 4.4407 | 0.1241 |
7.3237 | 23.58 | 1250 | 4.2262 | 0.1135 |
6.9945 | 24.53 | 1300 | 4.2348 | 0.1133 |
6.9508 | 25.47 | 1350 | 3.9280 | 0.1054 |
6.3118 | 26.42 | 1400 | 3.8789 | 0.1085 |
6.3038 | 27.36 | 1450 | 3.9444 | 0.1125 |
5.9028 | 28.3 | 1500 | 3.8333 | 0.1078 |
5.9109 | 29.25 | 1550 | 3.8047 | 0.1060 |
5.8046 | 30.19 | 1600 | 3.7575 | 0.1144 |
5.5068 | 31.13 | 1650 | 3.6156 | 0.0993 |
5.4652 | 32.08 | 1700 | 3.6463 | 0.1033 |
5.1792 | 33.02 | 1750 | 3.5317 | 0.1018 |
5.2711 | 33.96 | 1800 | 3.5806 | 0.1042 |
4.764 | 34.91 | 1850 | 3.5744 | 0.1024 |
4.8339 | 35.85 | 1900 | 3.4476 | 0.0966 |
4.7665 | 36.79 | 1950 | 3.3453 | 0.0989 |
4.4695 | 37.74 | 2000 | 3.3646 | 0.0933 |
4.5748 | 38.68 | 2050 | 3.4034 | 0.1019 |
4.3533 | 39.62 | 2100 | 3.4187 | 0.1035 |
4.2584 | 40.57 | 2150 | 3.3029 | 0.0993 |
4.0446 | 41.51 | 2200 | 3.3336 | 0.0972 |
4.1068 | 42.45 | 2250 | 3.3550 | 0.0993 |
3.9195 | 43.4 | 2300 | 3.3538 | 0.0998 |
3.9058 | 44.34 | 2350 | 3.2872 | 0.0960 |
3.8691 | 45.28 | 2400 | 3.3699 | 0.1010 |
3.6487 | 46.23 | 2450 | 3.3958 | 0.1033 |
3.7089 | 47.17 | 2500 | 3.4632 | 0.1034 |
3.5368 | 48.11 | 2550 | 3.2808 | 0.0961 |
3.6149 | 49.06 | 2600 | 3.3465 | 0.1019 |
3.4101 | 50.0 | 2650 | 3.2952 | 0.0970 |
3.392 | 50.94 | 2700 | 3.1991 | 0.0947 |
3.5055 | 51.89 | 2750 | 3.2169 | 0.0958 |
3.0548 | 52.83 | 2800 | 3.2389 | 0.1014 |
3.3108 | 53.77 | 2850 | 3.2238 | 0.0963 |
3.2846 | 54.72 | 2900 | 3.2196 | 0.1016 |
3.0562 | 55.66 | 2950 | 3.2425 | 0.1014 |
2.9703 | 56.6 | 3000 | 3.1926 | 0.0960 |
3.15 | 57.55 | 3050 | 3.2608 | 0.1019 |
3.1351 | 58.49 | 3100 | 3.2207 | 0.0999 |
3.0213 | 59.43 | 3150 | 3.1639 | 0.0973 |
3.0526 | 60.38 | 3200 | 3.2448 | 0.1008 |
2.7631 | 61.32 | 3250 | 3.1578 | 0.0909 |
2.9872 | 62.26 | 3300 | 3.1629 | 0.0953 |
2.7601 | 63.21 | 3350 | 3.1266 | 0.0967 |
2.8478 | 64.15 | 3400 | 3.1390 | 0.0939 |
2.726 | 65.09 | 3450 | 3.1591 | 0.0961 |
2.7968 | 66.04 | 3500 | 3.1354 | 0.0961 |
2.7528 | 66.98 | 3550 | 3.1616 | 0.0973 |
2.7885 | 67.92 | 3600 | 3.1367 | 0.0913 |
2.6265 | 68.87 | 3650 | 3.1837 | 0.0948 |
2.6711 | 69.81 | 3700 | 3.1300 | 0.0911 |
2.6724 | 70.75 | 3750 | 3.1289 | 0.0943 |
2.7063 | 71.7 | 3800 | 3.1347 | 0.0958 |
2.52 | 72.64 | 3850 | 3.1297 | 0.0934 |
2.5192 | 73.58 | 3900 | 3.1147 | 0.0918 |
2.385 | 74.53 | 3950 | 3.1021 | 0.0913 |
2.6387 | 75.47 | 4000 | 3.1284 | 0.0918 |
2.534 | 76.42 | 4050 | 3.1065 | 0.0919 |
2.5553 | 77.36 | 4100 | 3.1210 | 0.0953 |
2.5418 | 78.3 | 4150 | 3.1205 | 0.0928 |
2.3757 | 79.25 | 4200 | 3.1181 | 0.0926 |
2.5093 | 80.19 | 4250 | 3.0970 | 0.0922 |
2.4721 | 81.13 | 4300 | 3.1469 | 0.0938 |
2.4406 | 82.08 | 4350 | 3.1273 | 0.0918 |
2.4254 | 83.02 | 4400 | 3.1289 | 0.0907 |
2.4009 | 83.96 | 4450 | 3.1118 | 0.0897 |
2.5242 | 84.91 | 4500 | 3.0989 | 0.0911 |
2.4325 | 85.85 | 4550 | 3.1187 | 0.0922 |
2.5331 | 86.79 | 4600 | 3.0940 | 0.0921 |
2.4234 | 87.74 | 4650 | 3.0955 | 0.0917 |
2.4607 | 88.68 | 4700 | 3.1024 | 0.0925 |
2.407 | 89.62 | 4750 | 3.1032 | 0.0923 |
2.2203 | 90.57 | 4800 | 3.1189 | 0.0912 |
2.5802 | 91.51 | 4850 | 3.1072 | 0.0917 |
2.2169 | 92.45 | 4900 | 3.1065 | 0.0908 |
2.5712 | 93.4 | 4950 | 3.1111 | 0.0914 |
2.393 | 94.34 | 5000 | 3.1136 | 0.0916 |
2.3262 | 95.28 | 5050 | 3.1137 | 0.0918 |
2.4033 | 96.23 | 5100 | 3.1175 | 0.0911 |
2.3637 | 97.17 | 5150 | 3.1156 | 0.0915 |
2.4371 | 98.11 | 5200 | 3.1153 | 0.0915 |
2.4 | 99.06 | 5250 | 3.1138 | 0.0914 |
2.4233 | 100.0 | 5300 | 3.1140 | 0.0915 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 3
Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.75_g0.5-0.05_10_0.004_40
Base model
nguyenvulebinh/wav2vec2-base-vietnamese-250h