fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.75_g0.5-0.05_10_0.004_40

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1140
  • Wer: 0.0915

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer
1629.9275 0.94 50 824.7193 15.8408
1138.8538 1.89 100 363.0830 1.0609
228.953 2.83 150 77.0798 1.0
87.3839 3.77 200 66.6220 1.0
83.3628 4.72 250 64.3104 1.0
79.8819 5.66 300 61.3996 1.0
76.9216 6.6 350 58.9846 1.0
73.8162 7.55 400 57.3442 1.0
72.5154 8.49 450 56.7676 1.0
73.3129 9.43 500 56.7173 1.0
72.2926 10.38 550 56.5543 1.0
72.4577 11.32 600 58.1313 1.0
69.5175 12.26 650 57.4489 1.0076
64.6635 13.21 700 41.0107 0.7747
42.1225 14.15 750 18.6933 0.3211
23.9017 15.09 800 11.5678 0.2335
17.2962 16.04 850 8.6803 0.1841
13.8834 16.98 900 7.2569 0.1655
11.6255 17.92 950 6.2023 0.1497
10.4288 18.87 1000 5.5896 0.1394
9.5611 19.81 1050 5.3111 0.1419
8.7185 20.75 1100 5.0459 0.1333
8.529 21.7 1150 4.6049 0.1241
7.9187 22.64 1200 4.4407 0.1241
7.3237 23.58 1250 4.2262 0.1135
6.9945 24.53 1300 4.2348 0.1133
6.9508 25.47 1350 3.9280 0.1054
6.3118 26.42 1400 3.8789 0.1085
6.3038 27.36 1450 3.9444 0.1125
5.9028 28.3 1500 3.8333 0.1078
5.9109 29.25 1550 3.8047 0.1060
5.8046 30.19 1600 3.7575 0.1144
5.5068 31.13 1650 3.6156 0.0993
5.4652 32.08 1700 3.6463 0.1033
5.1792 33.02 1750 3.5317 0.1018
5.2711 33.96 1800 3.5806 0.1042
4.764 34.91 1850 3.5744 0.1024
4.8339 35.85 1900 3.4476 0.0966
4.7665 36.79 1950 3.3453 0.0989
4.4695 37.74 2000 3.3646 0.0933
4.5748 38.68 2050 3.4034 0.1019
4.3533 39.62 2100 3.4187 0.1035
4.2584 40.57 2150 3.3029 0.0993
4.0446 41.51 2200 3.3336 0.0972
4.1068 42.45 2250 3.3550 0.0993
3.9195 43.4 2300 3.3538 0.0998
3.9058 44.34 2350 3.2872 0.0960
3.8691 45.28 2400 3.3699 0.1010
3.6487 46.23 2450 3.3958 0.1033
3.7089 47.17 2500 3.4632 0.1034
3.5368 48.11 2550 3.2808 0.0961
3.6149 49.06 2600 3.3465 0.1019
3.4101 50.0 2650 3.2952 0.0970
3.392 50.94 2700 3.1991 0.0947
3.5055 51.89 2750 3.2169 0.0958
3.0548 52.83 2800 3.2389 0.1014
3.3108 53.77 2850 3.2238 0.0963
3.2846 54.72 2900 3.2196 0.1016
3.0562 55.66 2950 3.2425 0.1014
2.9703 56.6 3000 3.1926 0.0960
3.15 57.55 3050 3.2608 0.1019
3.1351 58.49 3100 3.2207 0.0999
3.0213 59.43 3150 3.1639 0.0973
3.0526 60.38 3200 3.2448 0.1008
2.7631 61.32 3250 3.1578 0.0909
2.9872 62.26 3300 3.1629 0.0953
2.7601 63.21 3350 3.1266 0.0967
2.8478 64.15 3400 3.1390 0.0939
2.726 65.09 3450 3.1591 0.0961
2.7968 66.04 3500 3.1354 0.0961
2.7528 66.98 3550 3.1616 0.0973
2.7885 67.92 3600 3.1367 0.0913
2.6265 68.87 3650 3.1837 0.0948
2.6711 69.81 3700 3.1300 0.0911
2.6724 70.75 3750 3.1289 0.0943
2.7063 71.7 3800 3.1347 0.0958
2.52 72.64 3850 3.1297 0.0934
2.5192 73.58 3900 3.1147 0.0918
2.385 74.53 3950 3.1021 0.0913
2.6387 75.47 4000 3.1284 0.0918
2.534 76.42 4050 3.1065 0.0919
2.5553 77.36 4100 3.1210 0.0953
2.5418 78.3 4150 3.1205 0.0928
2.3757 79.25 4200 3.1181 0.0926
2.5093 80.19 4250 3.0970 0.0922
2.4721 81.13 4300 3.1469 0.0938
2.4406 82.08 4350 3.1273 0.0918
2.4254 83.02 4400 3.1289 0.0907
2.4009 83.96 4450 3.1118 0.0897
2.5242 84.91 4500 3.0989 0.0911
2.4325 85.85 4550 3.1187 0.0922
2.5331 86.79 4600 3.0940 0.0921
2.4234 87.74 4650 3.0955 0.0917
2.4607 88.68 4700 3.1024 0.0925
2.407 89.62 4750 3.1032 0.0923
2.2203 90.57 4800 3.1189 0.0912
2.5802 91.51 4850 3.1072 0.0917
2.2169 92.45 4900 3.1065 0.0908
2.5712 93.4 4950 3.1111 0.0914
2.393 94.34 5000 3.1136 0.0916
2.3262 95.28 5050 3.1137 0.0918
2.4033 96.23 5100 3.1175 0.0911
2.3637 97.17 5150 3.1156 0.0915
2.4371 98.11 5200 3.1153 0.0915
2.4 99.06 5250 3.1138 0.0914
2.4233 100.0 5300 3.1140 0.0915

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.75_g0.5-0.05_10_0.004_40

Finetuned
(56)
this model