roberta-stance

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1034
  • Accuracy: 0.6232
  • Precision: 0.6077
  • Recall: 0.6301
  • F1: 0.6127

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 46 1.0695 0.5184 0.1728 0.3333 0.2276
No log 2.0 92 1.0372 0.5184 0.1728 0.3333 0.2276
No log 3.0 138 0.9757 0.5746 0.4121 0.4214 0.3711
No log 4.0 184 0.8826 0.6063 0.5820 0.5298 0.5423
No log 5.0 230 0.8429 0.6166 0.6159 0.6011 0.5824
No log 6.0 276 0.8153 0.6472 0.6257 0.6376 0.6294
No log 7.0 322 0.8600 0.6559 0.6492 0.6427 0.6315
No log 8.0 368 0.8912 0.6299 0.6138 0.6159 0.6108
No log 9.0 414 1.0091 0.6161 0.6048 0.6345 0.6084
No log 10.0 460 1.1034 0.6232 0.6077 0.6301 0.6127

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
20
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for turkish-nlp-suite/roberta-stance

Finetuned
(1403)
this model