metadata
library_name: transformers
inference:
parameters:
temperature: 1
top_p: 0.95
top_k: 40
repetition_penalty: 1.2
license: apache-2.0
language:
- en
pipeline_tag: text-generation
tags:
- mlx
base_model: ministral/Ministral-3b-instruct
ubaitur5/Ministral-3b-instruct-Q4-mlx
The Model ubaitur5/Ministral-3b-instruct-Q4-mlx was converted to MLX format from ministral/Ministral-3b-instruct using mlx-lm version 0.20.5.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("ubaitur5/Ministral-3b-instruct-Q4-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)