electra-finetuned / README.md
tejaskamtam's picture
End of training
97121e7 verified
---
license: apache-2.0
base_model: google/electra-base-generator
tags:
- generated_from_trainer
datasets:
- datasets/all_binary_and_xe_ey_fae_counterfactual
metrics:
- accuracy
model-index:
- name: electra-base-finetuned-xe_ey_fae
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: datasets/all_binary_and_xe_ey_fae_counterfactual
type: datasets/all_binary_and_xe_ey_fae_counterfactual
metrics:
- name: Accuracy
type: accuracy
value: 0.667333329363415
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-base-finetuned-xe_ey_fae
This model is a fine-tuned version of [google/electra-base-generator](https://huggingface.co/google/electra-base-generator) on the datasets/all_binary_and_xe_ey_fae_counterfactual dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7211
- Accuracy: 0.6673
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 100
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.5359 | 0.06 | 500 | 2.0696 | 0.6228 |
| 2.1807 | 0.13 | 1000 | 1.9677 | 0.6352 |
| 2.1028 | 0.19 | 1500 | 1.9192 | 0.6415 |
| 2.0658 | 0.26 | 2000 | 1.8923 | 0.6451 |
| 2.0426 | 0.32 | 2500 | 1.8699 | 0.6478 |
| 2.0133 | 0.39 | 3000 | 1.8580 | 0.6490 |
| 1.9978 | 0.45 | 3500 | 1.8411 | 0.6507 |
| 1.9862 | 0.52 | 4000 | 1.8297 | 0.6524 |
| 1.9745 | 0.58 | 4500 | 1.8154 | 0.6545 |
| 1.9606 | 0.64 | 5000 | 1.8056 | 0.6557 |
| 1.9486 | 0.71 | 5500 | 1.8033 | 0.6560 |
| 1.9416 | 0.77 | 6000 | 1.7894 | 0.6581 |
| 1.9279 | 0.84 | 6500 | 1.7848 | 0.6582 |
| 1.9196 | 0.9 | 7000 | 1.7786 | 0.6593 |
| 1.9168 | 0.97 | 7500 | 1.7762 | 0.6592 |
| 1.9123 | 1.03 | 8000 | 1.7744 | 0.6597 |
| 1.8942 | 1.1 | 8500 | 1.7625 | 0.6611 |
| 1.9053 | 1.16 | 9000 | 1.7576 | 0.6623 |
| 1.898 | 1.22 | 9500 | 1.7588 | 0.6620 |
| 1.8896 | 1.29 | 10000 | 1.7518 | 0.6625 |
| 1.8796 | 1.35 | 10500 | 1.7557 | 0.6619 |
| 1.8838 | 1.42 | 11000 | 1.7511 | 0.6628 |
| 1.8869 | 1.48 | 11500 | 1.7437 | 0.6640 |
| 1.8756 | 1.55 | 12000 | 1.7425 | 0.6641 |
| 1.8775 | 1.61 | 12500 | 1.7409 | 0.6641 |
| 1.8757 | 1.68 | 13000 | 1.7372 | 0.6649 |
| 1.8616 | 1.74 | 13500 | 1.7387 | 0.6646 |
| 1.8675 | 1.8 | 14000 | 1.7335 | 0.6648 |
| 1.8725 | 1.87 | 14500 | 1.7288 | 0.6660 |
| 1.8678 | 1.93 | 15000 | 1.7305 | 0.6659 |
| 1.8611 | 2.0 | 15500 | 1.7256 | 0.6666 |
| 1.853 | 2.06 | 16000 | 1.7286 | 0.6661 |
| 1.8487 | 2.13 | 16500 | 1.7285 | 0.6659 |
| 1.8543 | 2.19 | 17000 | 1.7229 | 0.6668 |
| 1.8519 | 2.26 | 17500 | 1.7240 | 0.6670 |
| 1.851 | 2.32 | 18000 | 1.7275 | 0.6662 |
| 1.8547 | 2.38 | 18500 | 1.7197 | 0.6673 |
| 1.8476 | 2.45 | 19000 | 1.7164 | 0.6675 |
| 1.8444 | 2.51 | 19500 | 1.7214 | 0.6676 |
| 1.8544 | 2.58 | 20000 | 1.7217 | 0.6668 |
| 1.8491 | 2.64 | 20500 | 1.7175 | 0.6678 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2