|
--- |
|
language: |
|
- en |
|
tags: |
|
- conversational-search |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: QuReTec |
|
results: |
|
- task: |
|
name: Conversational search |
|
type: conversational |
|
dataset: |
|
name: CANARD |
|
type: canard |
|
metrics: |
|
- name: Micro F1 |
|
type: f1 |
|
value: 68.7 |
|
- name: Micro Recall |
|
type: recall |
|
value: 66.1 |
|
- name: Micro Precision |
|
type: precision |
|
value: 71.5 |
|
--- |
|
|
|
# QuReTec: query resolution model |
|
|
|
QuReTeC is a query resolution model. It finds the relevant terms in a question history. |
|
It is based on **bert-large-uncased** with a max sequence length of 300. |
|
|
|
# Config details |
|
Training and evaluation was done using the following BertConfig: |
|
|
|
```json |
|
BertConfig { |
|
"_name_or_path": "uva-irlab/quretec", |
|
"architectures": ["BertForMaskedLM"], |
|
"attention_probs_dropout_prob": 0.1, |
|
"finetuning_task": "ner", |
|
"gradient_checkpointing": false, |
|
"hidden_act": "gelu", |
|
"hidden_dropout_prob": 0.4, |
|
"hidden_size": 1024, |
|
"id2label": { |
|
"0": "[PAD]", |
|
"1": "O", |
|
"2": "REL", |
|
"3": "[CLS]", |
|
"4": "[SEP]" |
|
}, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 4096, |
|
"label2id": { |
|
"O": 1, |
|
"REL": 2, |
|
"[CLS]": 3, |
|
"[PAD]": 0, |
|
"[SEP]": 4 |
|
}, |
|
"layer_norm_eps": 1e-12, |
|
"max_position_embeddings": 512, |
|
"model_type": "bert", |
|
"num_attention_heads": 16, |
|
"num_hidden_layers": 24, |
|
"pad_token_id": 0, |
|
"position_embedding_type": "absolute", |
|
"transformers_version": "4.6.1", |
|
"type_vocab_size": 2, |
|
"use_cache": true, |
|
"vocab_size": 30522 |
|
} |
|
``` |
|
|
|
# Original authors |
|
|
|
QuReTeC model from the published SIGIR 2020 paper: Query Resolution for Conversational Search with Limited Supervision by N. Voskarides, D. Li, P. Ren, E. Kanoulas and M. de Rijke. [[pdf]](https://arxiv.org/abs/2005.11723). |
|
|
|
# Contributions |
|
|
|
Uploaded by G. Scheuer ([website](https://giguruscheuer.com)) |