Edit model card

segcrack9k_conglomerate_train_test

This model is a fine-tuned version of nvidia/mit-b5 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0298
  • Mean Iou: 0.3639
  • Mean Accuracy: 0.7278
  • Overall Accuracy: 0.7278
  • Accuracy Background: nan
  • Accuracy Crack: 0.7278
  • Iou Background: 0.0
  • Iou Crack: 0.7278

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Crack Iou Background Iou Crack
0.0374 0.18 1000 0.0410 0.2472 0.4944 0.4944 nan 0.4944 0.0 0.4944
0.0337 0.36 2000 0.0341 0.3749 0.7497 0.7497 nan 0.7497 0.0 0.7497
0.0209 0.55 3000 0.0318 0.3335 0.6670 0.6670 nan 0.6670 0.0 0.6670
0.0099 0.73 4000 0.0315 0.3371 0.6743 0.6743 nan 0.6743 0.0 0.6743
0.026 0.91 5000 0.0298 0.3639 0.7278 0.7278 nan 0.7278 0.0 0.7278

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.0
  • Tokenizers 0.13.3
Downloads last month
8
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for varcoder/segcrack9k_conglomerate_train_test

Base model

nvidia/mit-b5
Finetuned
(42)
this model