|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: mistralai/Mistral-7B-v0.3 |
|
model-index: |
|
- name: outputs/axolotl-qlora-out-line |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: mistralai/Mistral-7B-v0.3 |
|
model_type: MistralForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
|
|
load_in_8bit: true |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: vdaita/editpackft_inst_line |
|
type: oasst |
|
dataset_prepared_path: |
|
val_set_size: 0.05 |
|
output_dir: ./outputs/axolotl-qlora-out-line |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
|
|
sequence_len: 2048 |
|
sample_packing: true |
|
eval_sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_modules: |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
wandb_project: huggingface |
|
wandb_log_model: axolotl-qlora-line-mistral |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 |
|
num_epochs: 4 |
|
optimizer: paged_adamw_32bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
logging_steps: 1 |
|
flash_attention: true |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 4 |
|
saves_per_epoch: 1 |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# outputs/axolotl-qlora-out-line |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2883 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.847 | 0.01 | 1 | 0.9975 | |
|
| 0.3533 | 0.26 | 20 | 0.2772 | |
|
| 0.299 | 0.52 | 40 | 0.2501 | |
|
| 0.2288 | 0.77 | 60 | 0.2439 | |
|
| 0.334 | 1.01 | 80 | 0.2394 | |
|
| 0.3017 | 1.27 | 100 | 0.2399 | |
|
| 0.2394 | 1.53 | 120 | 0.2416 | |
|
| 0.2261 | 1.78 | 140 | 0.2400 | |
|
| 0.177 | 2.02 | 160 | 0.2388 | |
|
| 0.1911 | 2.28 | 180 | 0.2557 | |
|
| 0.1884 | 2.54 | 200 | 0.2601 | |
|
| 0.1516 | 2.79 | 220 | 0.2627 | |
|
| 0.1545 | 3.03 | 240 | 0.2628 | |
|
| 0.092 | 3.29 | 260 | 0.2915 | |
|
| 0.1251 | 3.55 | 280 | 0.2892 | |
|
| 0.109 | 3.8 | 300 | 0.2883 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.0.dev0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |