See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/CodeLlama-13b-hf-flash
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- dd5a5c96e4e097cc_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/dd5a5c96e4e097cc_train_data.json
type:
field_input: title_en
field_instruction: question
field_output: context_en
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: 1
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: vermoney/154783a0-790b-40fd-974d-55872a961d67
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 49GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/dd5a5c96e4e097cc_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 6c79606a-e83f-4fc9-ab9c-6e73a2d64778
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6c79606a-e83f-4fc9-ab9c-6e73a2d64778
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
154783a0-790b-40fd-974d-55872a961d67
This model is a fine-tuned version of NousResearch/CodeLlama-13b-hf-flash on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5702
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0011 | 1 | 1.8994 |
7.5233 | 0.0055 | 5 | 1.8506 |
7.3382 | 0.0111 | 10 | 1.7360 |
6.5233 | 0.0166 | 15 | 1.6388 |
7.3396 | 0.0221 | 20 | 1.5925 |
6.8284 | 0.0277 | 25 | 1.5732 |
5.573 | 0.0332 | 30 | 1.5702 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for vermoney/154783a0-790b-40fd-974d-55872a961d67
Base model
NousResearch/CodeLlama-13b-hf-flash