File size: 1,958 Bytes
2c0f741 87fd603 2c0f741 9a97fe9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: mit
---
# Model Card for Model ViT fine tuning on CiFAR10
<!-- Provide a quick summary of what the model is/does. -->
It's a toy experiemnt of fine tuning ViT by using huggingface transformers.
## Model Details
It's fine tuned on CiFAR10 for 1000 steps, and achieved accuracy of 98.7% on test split.
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** verypro
- **Model type:** Vision Transformer
- **License:** MIT
- **Finetuned from model [optional]:** google/vit-base-patch16-224
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
```python
from transformers import ViTImageProcessor, ViTForImageClassification
from torchvision import datasets
# # 初始化模型和特征提取器
image_processor = ViTImageProcessor.from_pretrained('verypro/vit-base-patch16-224-cifar10')
model = ViTForImageClassification.from_pretrained('verypro/vit-base-patch16-224-cifar10')
# 加载 CIFAR10 数据集
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True)
sample = test_dataset[0]
image = sample[0]
gt_label = sample[1]
# 保存原始图像,并打印其标签
image.save("original.png")
print(f"Ground truth class: '{test_dataset.classes[gt_label]}'")
inputs = image_processor(image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
print(logits)
predicted_class_idx = logits.argmax(-1).item()
predicted_class_label = test_dataset.classes[predicted_class_idx]
print(f"Predicted class: '{predicted_class_label}', confidence: {logits[0, predicted_class_idx]:.2f}")
```
The output of above code snippets should be like:
```bash
Ground truth class: 'cat'
tensor([[-1.1497, -0.1080, -0.7349, 9.2517, -1.3094, 0.5403, -0.9521, -1.0223,
-1.4102, -1.5389]], grad_fn=<AddmmBackward0>)
Predicted class: 'cat', confidence: 9.25
```
|