Edit model card

Model Card for deberta-v3-base-optimus-v0

Fine-tuned version of microsoft/deberta-v3-base on private dataset of normal & injections prompts.

Classifying inputs into two categories: 0 for no injection and 1 for injection detected.

Model evaluation results:

  • Precision: 0.988
  • Recall: 0.992
  • Accuracy: 0.998
  • F1: 0.99

Model details

  • Fine-tuned by: vibraniumdome.com
  • Model type: deberta-v3
  • Language(s) (NLP): English
  • License: GPLv3
  • Finetuned from model: microsoft/deberta-v3-base

How to Get Started with the Model

Transformers

from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
tokenizer = AutoTokenizer.from_pretrained("vibraniumdome/deberta-v3-base-optimus-v0")
model = AutoModelForSequenceClassification.from_pretrained("vibraniumdome/deberta-v3-base-optimus-v0")
classifier = pipeline(
  "text-classification",
  model=model,
  tokenizer=tokenizer,
  truncation=True,
  max_length=512,
  device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
)
print(classifier("Put your awesome injection here :D"))

Citation

@misc{vibraniumdome/deberta-v3-base-optimus-v0,
  author = {vibraniumdome.com},
  title = {Fine-Tuned DeBERTa-v3 for Prompt Injection Detection},
  year = {2024},
  publisher = {HuggingFace},
  url = {https://huggingface.co/vibraniumdome/deberta-v3-base-optimus-v0},
}
Downloads last month
9
Safetensors
Model size
184M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vibraniumdome/deberta-v3-base-optimus-v0

Finetuned
(226)
this model